
Simscape™ Battery™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simscape™ Battery™ User's Guide
© COPYRIGHT 2022–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2022 Online only New for Version 1.0 (Release 2022b)
March 2023 Online only Revised for Version 1.1 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Simscape Battery Product Description . 1-2

Battery Pack Modeling Workflows
2

Battery Modeling Workflow . 2-2
Define Battery Design . 2-4
Visualize Battery . 2-5
Define Model Resolution . 2-5
Build Battery Model . 2-5

Manage Battery Run-Time Parameters with Centralized Script 2-7
Manage Parameters and Initial Targets . 2-7
Create Battery Pack and Manage Run-Time Parameters 2-7

Simulation and Analysis of Thermal Management Systems
3

Connect Cooling Plate to Battery Blocks . 3-2

Examples
4

Build Model of Battery Module with Inter-Cell Heat Exchange 4-2

Build Model of Battery Module Assembly with Multi-Module Cooling
Plate . 4-9

Analyze Battery Spatial Temperature Variation During Fast Charge . . . 4-18

Get Started with Battery Builder App . 4-31

Battery Cell Characterization for Electric Vehicles 4-55

iii

Contents

Build Model of Hybrid-Cell Battery Pack . 4-69

Protect Battery During Charge and Discharge for Electric Vehicle 4-77

Peak Shaving with Battery Energy Storage System 4-95

Thermal Analysis for New and Aged Battery Packs 4-105

Size Resistor for Battery Passive Cell Balancing 4-109

Battery Monitoring . 4-113

Battery Charging and Discharging . 4-116

Battery State-of-Health Estimation . 4-118

Battery State-of-Charge Estimation . 4-120

Battery Passive Cell Balancing . 4-122

Build Detailed Model of Battery Pack From Cylindrical Cells 4-124

Build Detailed Model of Battery Pack From Pouch Cells 4-148

Build Model of Battery Module with Thermal Effects 4-170

Build Model of Battery Pack with Cell Aging . 4-179

Build Model of Battery Pack with Cell Balancing Circuit 4-187

Build Model of Battery Pack for Grid Application 4-196

Build Simple Model of Battery Module in MATLAB and Simscape 4-204

Build Simple Model of Battery Pack in MATLAB and Simscape 4-211

iv Contents

Getting Started

1

Simscape Battery Product Description
Design and simulate battery and energy storage systems

Simscape™ Battery™ provides design tools and parameterized models for designing battery systems.
You can create digital twins, run virtual tests of battery pack architectures, design battery
management systems, and evaluate battery system behavior across normal and fault conditions.

Battery Pack Model Builder is a design tool that lets you interactively evaluate different battery pack
architectures. The tool automates the creation of simulation models that match the desired pack
topology and includes cooling plate connections so electrical and thermal responses can be
evaluated.

Parameterized models of battery packs and battery management systems demonstrate operations,
including cell balancing and state of charge estimation. You can use these examples to determine cell
requirements, perform trade-off analyses and hardware-in-the-loop (HIL) testing, and generate
readable and efficient C/C++ code.

1 Getting Started

1-2

Battery Pack Modeling Workflows

• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

2

Battery Modeling Workflow
In this section...
“Define Battery Design” on page 2-4
“Visualize Battery” on page 2-5
“Define Model Resolution” on page 2-5
“Build Battery Model” on page 2-5

Simscape Battery includes MATLAB® objects, functions, and apps to automate the creation of
Simscape battery models. Use these tools to define your own battery design specifications, visualize
your battery in a 3-D space, customize the modeling resolution during simulation, and generate a
Simulink® library that contains your custom generated battery blocks. You can use these blocks to
assist with virtual battery design and verification, help develop battery control algorithms using
Simulink software, explore design sensitivities, and design thermal management strategies.

You can develop and test battery control strategies by simulating your custom battery blocks with the
blocks in the Battery Management System (BMS) library of Simscape Battery. You can also
thermally couple your custom battery models in Simulink with the blocks in the Thermal
Management System library. Alternatively, you can define your own custom battery control and
cooling system blocks.

By using the battery objects in Simscape Battery, you can specify several electro-thermal features
that you want to model in your battery simulation. For example, you can:

• Add a cell-balancing circuit to every parallel assembly or cell for BMS control.
• Add custom thermal boundary conditions, such as thermal resistors, that represent ambient heat

dissipation paths.
• Enable battery aging models in the cell-level model block.

All battery models are scaled up from a single cell model block, which by default is defined as the
Battery (Table-Based) block. You can define your own custom battery cell as long as it meets specific
requirements.

You can customize the model resolution before model creation to suit the model requirements of your
specific engineering problem. A larger number of equivalent circuit models of a battery provides a

2 Battery Pack Modeling Workflows

2-2

higher resolution. By default, the model resolution is Lumped, which is the lowest resolution and
provides the best simulation speed and compilation time. This resolution indicates that only one
“scaled-up” equivalent circuit model represents your system. If you increase the model resolution to
Grouped, you can customize the number of electrical and thermal models required to answer your
specific engineering question while increasing simulation speed. If you require a very detailed battery
model, you can choose to simulate every single cell inside your battery electrically and thermally. This
level of resolution comes at a great performance cost. To support real-time simulations, keep the
number of equivalent circuit models equal to or less than 30. All custom Simscape Battery models
support the Simscape scalable compilation feature.

To create your own battery model, follow these steps:

1 “Define Battery Design” on page 2-4
2 “Visualize Battery” on page 2-5
3 “Define Model Resolution” on page 2-5
4 “Build Battery Model” on page 2-5

This workflow applies whether you are creating your battery model at the MATLAB Command
Window or by using the Battery Builder app.

 Battery Modeling Workflow

2-3

Define Battery Design
Create a Simscape Battery object and specify its properties. These are the battery objects you can
create:

• Cell
• ParallelAssembly
• Module
• ModuleAssembly
• Pack

You can create these objects either at the MATLAB Command Window or by using the Battery
Builder app. The Battery Builder app allows you to interactively create, modify, visualize, and build
your MATLAB battery objects.

You can also create these objects without any inputs and define them with the required level of detail.
You can create the battery models with or without defining the geometrical characteristics of the

2 Battery Pack Modeling Workflows

2-4

battery cells and the battery topology. High-level models without consideration of geometry are
normally used as value models early in the design stages of a prototype pack to evaluate key
performance indicators. Battery mass and packaging volume are dependent properties that you can
obtain by querying the Mass and PackagingVolume properties of the battery object. Use the
CumulativeCellCapacity and CumulativeCellEnergy properties to understand how the cell-
level capacity and energy values scale up at system level without considering non-cell component
losses or other operating conditions. To determine the actual delivered energy and capacity of your
battery pack, you must simulate your battery model first.

Visualize Battery
The BatteryChart object provides a custom battery visualization function to verify the hardware
specifications of your battery, such as the cell dimensions, inter-cell spacing, inter-module spacing,
number of cells, selected parallel assembly topology, and many more. Geometry and cell layout are
required properties to perform more detailed thermal modelling with thermal management system
blocks, like the coupling of a battery module block with one of the cooling plates blocks provided in
the Thermal library of Simscape Battery.

Inside the Battery Builder app, the Selected Battery panel automatically displays a 3-D plot of the
selected object. You can edit multiple properties of the plot under the Battery Chart tab, such as
axes labels, axes direction, title of the plot, and lights. You can also check the current simulation
strategy and model resolution of the selected battery object.

Define Model Resolution
Set a suitable model resolution or simulation strategy by specifying the ModelResolution property
in the ParallelAssembly and Module levels. When you specify the resolution of your battery
model, you must consider the trade-off between model resolution and model speed.

Note To obtain optimal performance, keep the number of models to lower than or equal to 30.

You can simulate specific regions or areas of your battery by using a grouped model resolution and by
specifying the SeriesGrouping and ParallelGrouping properties. With this flexible approach,
you can simulate specific subcomponents of your battery that exhibit the hottest and coldest
temperatures, or the highest and lowest state of charge. You must capture these spreads to correctly
test and develop the battery control strategy.

Build Battery Model
Use the buildBattery function to create a custom battery model from the ParallelAssembly,
Module, ModuleAssembly, and Pack objects.

To build the battery model in the Battery Builder app, under the Battery Builder tab, in the
Library section of the toolstrip, select Create Library.

This function creates one or two libraries in your current working directory that contain the
necessary subsystems and variables you need to simulate the battery. The buildBattery function
creates one library for the Simscape-level battery blocks of the object hierarchy
(ParallelAssembly and Module), and another library for the Simulink-level battery subsystems,
ModuleAssembly and Pack. If you also specify the MaskParameters and MaskInitialTargets

 Battery Modeling Workflow

2-5

name-value arguments, the buildBattery function generates a parameterization script that helps
you managing the run-time parameters of the different modules and parallel assemblies inside the
pack.

See Also
Apps
Battery Builder

Objects
Cell | ParallelAssembly | Module | ModuleAssembly | Pack

Functions
buildBattery

Related Examples
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211

2 Battery Pack Modeling Workflows

2-6

Manage Battery Run-Time Parameters with Centralized Script
In this section...
“Manage Parameters and Initial Targets” on page 2-7
“Create Battery Pack and Manage Run-Time Parameters” on page 2-7

Simscape Battery models that you create by using the battery pack builder objects comprise
conditional and run-time parameters. When you create the battery objects, you can specify the
conditional parameters of the generated battery models by using the CellModelBlock property of
the underlying Cell object. The software defines the run-time parameters for these models, such as
the battery cell impedance or the battery open-circuit voltage, after you create the model. You
therefore cannot define the run-time parameters by using the battery pack builder objects.

To define the run-time parameters, specify them in the block mask of the generated Simscape models
or use the MaskParameters argument of the buildBattery function. If you specify the
MaskParameters argument as "VariableNames", the function also generates a parameterization
script that you can use to manage the run-time parameters of the modules and cells inside your
system.

Manage Parameters and Initial Targets
Use the MaskInitialTargets and MaskParameters arguments of the buildBattery function to
choose between default numeric values or variable names for the parameters and initial conditions in
each Module and ParallelAssembly block in the generated library.

When you set the MaskParameters argument to "VariableNames", the buildBattery function
generates a script. Use this script to set each module and cell parameters, including the resistance
and the open-circuit voltage, for all the battery modules in your battery pack. If you also set the
MaskInitialTargets argument to "VariableNames", then the generated file contains the mask
parameter definitions at the beginning.

When you set the MaskInitialTargets argument to "VariableNames", the buildBattery
function generates a script. Use this script to set each of the initial values such as the initial
temperature and state of charge for all the battery modules in your battery pack. If you also set the
MaskParameters argument to "VariableNames", then the generated file contains the initial
targets definitions at the end.

Create Battery Pack and Manage Run-Time Parameters
In this example, you create a simple battery pack and check the effects of setting the
MaskParameters and the MaskInitialTargets arguments of the buildBattery function to
"VariableNames".

Create a Pack object by creating Cell, ParallelAssembly, Module, and ModuleAssembly
objects, in this order.

import simscape.battery.builder.*;
batteryCell = Cell(Geometry=CylindricalGeometry);
pSet = ParallelAssembly(Cell=batteryCell,NumParallelCells=48,Topology="Hexagonal",Rows=4);
module = Module(ParallelAssembly=pSet,NumSeriesAssemblies=4);
moduleAssembly = ModuleAssembly(Module=repmat(module,1,2));
pack = Pack(ModuleAssembly=repmat(moduleAssembly,1,4),BalancingStrategy="Passive");

 Manage Battery Run-Time Parameters with Centralized Script

2-7

pack =

 Pack with properties:

 ModuleAssembly: [1×4 simscape.battery.builder.ModuleAssembly]

Use the buildBattery function to build the library file from the Pack object. Set the LibraryName
name-value argument of the function to give the library a meaningful name. Then, set
MaskParameters and MaskParameters to "VariableNames" to generate a parameterization
script that you can use to manage the run-time parameters of the modules and parallel assemblies in
the pack.

buildBattery(pack,LibraryName="batteriesVariableNames",...
MaskInitialTargets="VariableNames",...
MaskParameters="VariableNames")

Generating Simulink library 'batteriesVariableNames_lib' in the current directory 'C:\Work\' ...

This figure shows the content of the folder after the function generates the library files:

Open the generated library batteriesVariableNames SLX file to access the ModuleAssembly and
Pack objects as Simscape subsystems.

2 Battery Pack Modeling Workflows

2-8

Navigate to the ModuleAssembly1 subsystem by double-clicking the Pack1 subsystem. Double-click
the Module1 block to open the Property Inspector.

The software associates a specific variable name to the values of each parameter in the Main section
of the Module1 block. You can specify these values inside the batteryVariableNames_param

 Manage Battery Run-Time Parameters with Centralized Script

2-9

script without having to change them inside the model by opening the Property Inspector of each
block individually.

See Also
Objects
Cell | ParallelAssembly | Module | ModuleAssembly | Pack

Functions
buildBattery

Related Examples
• “Battery Modeling Workflow” on page 2-2
• “Build Model of Hybrid-Cell Battery Pack” on page 4-69

2 Battery Pack Modeling Workflows

2-10

Simulation and Analysis of Thermal
Management Systems

3

Connect Cooling Plate to Battery Blocks
Simscape™ Battery™ includes blocks and models of battery cooling systems for simulations of battery
thermal management. You can use these blocks to add detailed thermal boundary conditions and
thermal interfaces to the battery blocks. These cooling system blocks contain both thermal and
thermal-liquid domain connections:

• To interface to or from battery blocks that include a thermal model, use the thermal domain
nodes.

• To specify coolant inlet and outlet properties and operating conditions, use the thermal-liquid
domain nodes.

The cooling system blocks of the Thermal library are flat cooling plates. These blocks support three
main flow configurations: parallel channels, U-shaped rectangular channels, and edge cooling. In the
edge cooling configuration, the coolant flows at one end of the flat plate and all the heat from the
battery cells is transferred via conduction within the cooling plate material. You can discretize these
cooling plates into elements to closely capture temperature spreads resulting from the dynamic
interaction with the battery and the coolant flow.

You can link a cooling plate to a battery block manually or automatically.

To manually link a cooling plate to a battery block:

1 Define your battery object and model. To display the required thermal interface characteristics
for cooling plate coupling in the form of a structure, use the ThermalNodes property of the
battery objects.

2 Drag and drop your battery block and the required cooling plate block in your Simulink model
and connect the thermal domain nodes of the two blocks.

3 Input the required ThermalNodes information into the cooling plate block. This information
includes: number of nodes, 2-D location of nodes, and dimensions of nodes.

When you link a cooling plate to a battery block, the total length and width of the cooling plate are
automatically fitted to that specific block.

To automatically link a cooling plate to a battery block, at the time of creation of your battery object,
in the CoolingPlateBlockPath property, specify the path of the cooling system block that you
want to use from the Thermal library. When you build your battery object, the Battery Pack Builder
automatically links the battery block to the specified cooling plate block at the boundary defined by
the CoolingPlate property. For example, this figure shows the internal structure of a module
assembly when you set the CoolingPlate property to "Bottom" and the
CoolingPlateBlockPath property to "batt_lib/Thermal/Parallel Channels":

3 Simulation and Analysis of Thermal Management Systems

3-2

The cooling plate linkage relies on the array-of-nodes domain, a multi-dimensional or vectorized
thermal domain connector. Vectorized thermal domain connectors facilitate the element-wise
coupling of battery thermal models to the cooling plate components. Vectorized connections are
necessary in the detailed thermal modeling of battery modules that contain many different parallel
assemblies or cells. The blocks generated by using the buildBattery function use the
arrayOfThermalNodesConnector block to concatenate arrays of thermal nodes into single array of
thermal nodes port.

For example, consider a module that contains six parallel assemblies with six cells in parallel. You can
choose to thermally simulate this module using three thermal models by setting the SeriesGrouping
property to [1,4,1]. In this case the length of the thermal node array is equal to 3. Alternatively,
you can increase the model resolution to five thermal models by setting the SeriesGrouping
property to [1,1,2,1,1]. Here, the length of the thermal node array increases to 5. The size of the
ThermalNodes property changes to reflect this increased level of resolution. This also changes the
area and location of the thermal nodes in the battery block. This figure shows the thermal linkage
that occurs when you link this battery module to one of the cooling plates from the Thermal library
in Simscape Battery.

 Connect Cooling Plate to Battery Blocks

3-3

See Also
Apps
Battery Builder

Simscape Blocks
arrayOfThermalNodesConnector | Parallel Channels | U-shaped Channels | Edge Cooling

Objects
Cell | ParallelAssembly | Module | ModuleAssembly | Pack

Related Examples
• “Build Model of Battery Module Assembly with Multi-Module Cooling Plate” on page 4-9
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211
• “Thermal Analysis for New and Aged Battery Packs” on page 4-105

3 Simulation and Analysis of Thermal Management Systems

3-4

Examples

4

Build Model of Battery Module with Inter-Cell Heat Exchange

This example shows how to create and build a Simscape™ system model of a battery module with
inter-cell heat exchange in Simscape™ Battery™. Inter-cell heat transfer mechanisms are relevant in
the design of battery systems, including analyzing battery thermal propagation and evaluating
electro-thermal load cycles in virtual verification. The heat transfer mechanisms supported in
Simscape™ Battery™ are conduction, convection, and radiation. To create the system model of a
battery module, you must first create the Cell and ParallelAssembly objects that comprise the
battery module, and then use the buildBattery function. The buildBattery function generates
Simscape models for these Simscape Battery objects:

• ParallelAssembly
• Module
• ModuleAssembly
• Pack

This function creates a library in your working folder that contains a system model block of a battery
module. Use this model as reference in your simulations. You can modify the run-time parameters for
this model block, such as the battery cell resistance or the battery open-circuit voltage, after you
create the model. To define the run-time parameters, specify them in the block mask of the generated
Simscape models or use the MaskParameters argument of the buildBattery function.

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

Create Battery Module Object in MATLAB

To create a battery module object, you must first design and create the foundational elements of the
battery module.

This figure shows the hierarchy of a battery pack object in a bottom-up view:

4 Examples

4-2

A battery module comprises multiple parallel assemblies. These parallel assemblies, in turn, comprise
a number of battery cells connected electrically in parallel under a specific topological configuration
or geometrical arrangement.

Create Cell Object

To create the Module object, first create a Cell object with the cylindrical geometry.

cylindricalGeometry = CylindricalGeometry(Height = simscape.Value(0.07,"m"),...
 Radius = simscape.Value(0.0105,"m"));

The CylindricalGeometry object defines the cylindrical geometrical arrangement of the battery
cell. To specify the height and radius of the cell, set the Height and Radius properties of the
CylindricalGeometry object. For more information on the possible geometrical arrangements of a
battery cell, see the PouchGeometry and PrismaticGeometry documentation pages.

Now use this CylindricalGeometry object to create a cylindrical battery cell.

batteryCell = Cell(Geometry = cylindricalGeometry)

batteryCell =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.CylindricalGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]
 Capacity: [1×1 simscape.Value]
 Energy: [1×1 simscape.Value]

Show all properties

 Build Model of Battery Module with Inter-Cell Heat Exchange

4-3

The Cell object allows you to simulate the thermal effects of the battery cell by using a simple 1-D
model. To simulate the thermal effects of the battery cell, in the BlockParameters property of the
CellModelOptions property of the Cell object, set the thermal_port property to "model".

batteryCell.CellModelOptions.BlockParameters.thermal_port = "model";

Create ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. In this example, you create a parallel
assembly of 3 cylindrical cells stacked in a square topology over three rows.

To create the ParallelAssembly object, use the Cell object and specify the NumParallelCells,
StackingAxis, and Topology properties according to your design.

batteryParallelAssembly = ParallelAssembly(Cell = batteryCell,...
 NumParallelCells = 3, ...
 StackingAxis = "X", ...
 Topology = "Square");

Create Module Object

You now have all the foundational elements to create your battery module. A battery module
comprises multiple parallel assemblies connected in series. In this example, you create a battery
module of six parallel assemblies. You also define the model resolution of the module.

To create the Module object, use the ParallelAssembly object and specify the
NumSeriesAssemblies, InterParallelAssemblyGap, and the ModelResolution properties.

batteryModule = Module(ParallelAssembly = batteryParallelAssembly,...
 NumSeriesAssemblies = 6, ...
 InterParallelAssemblyGap = simscape.Value(2e-3,'m'),...
 ModelResolution = "Detailed");

Enable Inter-Cell Thermal Path

To enable cell-to-cell heat conduction paths, set the InterCellThermalPath property of the
batteryModule object to "on". The battery cell model block must enable a valid thermal model with
at least one thermal domain port.

batteryModule.InterCellThermalPath = "on";

The Module and ParallelAssembly objects simulate thermal interactions between adjacent battery
cells by creating a thermal domain network. In this thermal domain network, the thermal model of
every battery cell is inter-connected to each of their neighbors. Enabling the
InterCellThermalPath property thermally connects adjacent cells by using a Simscape™ thermal
resistance block. You can set the Thermal resistance parameter after you build the Simscape™
battery block. You can set a different value for every thermal connection between two adjacent cells.

4 Examples

4-4

View Information on Inter-Cell Thermal Path Connectivity

To view the total number of inter-cell thermal connections inside the Module object, use the
NumInterCellThermalConnections property. This property is the sum of all inter-cell thermal
connections inside every parallel assembly in the module.

disp(batteryModule.NumInterCellThermalConnections)

 12

To view the number of thermal connections between adjacent ParallelAssemblies objects, use the
NumInterCellThermalConnections property.

disp(batteryModule.NumInterParallelAssemblyThermalConnections)

 35

To visualize the cell-to-cell thermal connections, use the InterCellConnectionsMapping property.
The InterCellConnectionsMapping is a 2-D matrix that shows the connections between adjacent
battery cell models. For each column, the first row of the InterCellConnectionsMapping
property shows the cell index in a specific parallel assembly from which the thermal connection
originates from. The second row contains the index of the corresponding destination cell. This
thermal connection is bidirectional as with all thermal domain connections in Simscape™. For a
Module object, the indexes are based only on the number of cells connected in parallel in the parallel
assembly.

disp(batteryModule.InterCellConnectionsMapping)

 1 2 1 2 1 2 1 2 1 2 1 2
 2 3 2 3 2 3 2 3 2 3 2 3

To visualize the parallelAssembly-to-parallelAssembly thermal connections, use the
InterParallelAssemblyConnectionsMapping property. The
InterParallelAssemblyConnectionsMapping is a 2-D matrix that shows the connections
between adjacent battery cell models from adjacent parallel assemblies inside the module. For each
column, the first row of the InterParallelAssemblyConnectionsMapping shows the

 Build Model of Battery Module with Inter-Cell Heat Exchange

4-5

ParallelAssembly index inside the Module from which the thermal connection originates from.
The second row contains the index of the corresponding destination ParallelAssembly.

disp(batteryModule.InterParallelAssemblyConnectionsMapping)

 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5
 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 6

The battery builder in Simscape Battery also supports radiation heat exchange between cells.
Enabling the InterCellRadiativeThermalPath property thermally connects adjacent cell models
by using a Simscape™ radiation block. This figure shows a comparison between the two methods:

Visualize Battery Module and Check Model Resolution

To obtain the number of Simscape Battery(Table-based) blocks used for the module simulation, use
the NumModels property of your Module object.

disp(batteryModule.NumModels)

 18

To visualize the battery module before you build the system model and to view its model resolution,
use the BatteryChart object. Create the figure where you want to visualize your battery module.

f = uifigure(Color="w");
tl = tiledlayout(1,2,"Parent",f,"TileSpacing","Compact");

Then use the BatteryChart object to visualize the battery module. To view the model resolution of
the module, set the SimulationStrategyVisible property of the BatteryChart object to "On".

nexttile(tl)
batteryModuleChart1 = BatteryChart(Parent = tl, Battery = batteryModule);
nexttile(tl)
batteryModuleChart2 = BatteryChart(Parent = tl, Battery = batteryModule, SimulationStrategyVisible = "On");

4 Examples

4-6

Build Simscape Model of Module Object

After you create your battery objects, you need to convert them into Simscape models to use them in
block diagrams. You can then use these models as reference for your system integration and
requirement evaluation, cooling system design, control strategy development, hardware-in-the-loop,
and many more applications.

To create a library that contains the Simscape Battery model of the Module object, use the
buildBattery function. To create a script where you can individually define the inter-cell thermal
resistance parameters for each thermal connection, as well as all other parameters within your
battery, set the MaskParameters argument of the buildBattery function to "VariableNames".

buildBattery(batteryModule,"LibraryName","interCellHeatExchangeModule", ...
 "MaskParameters","VariableNames");

This function creates a library named interCellHeatExchangeModule_lib in your working folder.
Open this model to access your battery objects as Simscape blocks.

 Build Model of Battery Module with Inter-Cell Heat Exchange

4-7

See Also
Battery Builder

Related Examples
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-8

Build Model of Battery Module Assembly with Multi-Module
Cooling Plate

This example shows how to create and build a Simscape™ system model of a module assembly with a
multi-module cooling plate by using Simscape™ Battery™. Large cooling plates that span across
several battery modules are quite common in the design of battery systems, including in the
automotive and consumer electronics sector. The workflow in this example automates the process of
thermally coupling several modules together to a single battery cooling plate. To create the system
model of a battery ModuleAssembly, you must first create the Cell, ParallelAssembly, and
Module objects that comprise the battery module assembly, and then use the buildBattery
function. The buildBattery function generates Simscape models for these Simscape Battery
objects:

• ParallelAssembly
• Module
• ModuleAssembly
• Pack

This function creates a library in your working folder that contains a system model block of a battery
module. Use this model as reference in your simulations. You can modify the run-time parameters for
this model block, such as the battery cell resistance or the battery open-circuit voltage, after you
create the model. To define the run-time parameters, specify them in the block mask of the generated
Simscape models or use the MaskParameters argument of the buildBattery function.

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

Create Battery ModuleAssembly Object in MATLAB

To create a battery module assembly object, you must first design and create the foundational
elements of the battery module assembly.

This figure shows the hierarchy of a battery pack object in a bottom-up view:

 Build Model of Battery Module Assembly with Multi-Module Cooling Plate

4-9

A battery module assembly comprises multiple battery modules. These module assemblies, in turn,
comprise a number of battery parallel assemblies connected electrically in parallel or series under a
specific topological configuration or geometrical arrangement.

Create Cell Object

To create the ModuleAssembly object, first create a Cell object with the pouch geometry.

pouchgeometry = PouchGeometry(Height = simscape.Value(0.1,"m"),...
 Length = simscape.Value(0.3,"m"), TabLocation = "Opposed");

The PouchGeometry object defines the pouch geometrical arrangement of the battery cell. To specify
the height, radius, and location of tabs of the cell, set the Height, Radius, and TabLocation
properties of the PouchGeometry object.

Now use this PouchGeometry object to create a pouch battery cell.

batterycell = Cell(Geometry = pouchgeometry)

batterycell =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.PouchGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]
 Capacity: [1×1 simscape.Value]
 Energy: [1×1 simscape.Value]

Show all properties

The Cell object allows you to simulate the thermal effects of the battery cell by using a simple 1-D
model. To simulate the thermal effects of the battery cell, in the BlockParameters property of the

4 Examples

4-10

CellModelOptions property of the Cell object, set the thermal_port property to "model" and
the T_dependence property to "yes".

batterycell.CellModelOptions.BlockParameters.thermal_port = "model";
batterycell.CellModelOptions.BlockParameters.T_dependence = "yes";

You can define the thermal boundary conditions for battery parallel assemblies and modules only if
you have previously defined a thermal model at the cell level.

Create ParallelAssembly Object

A parallel assembly comprises multiple battery cells connected electrically in parallel under a specific
topological configuration or geometrical arrangement. In this example, you create a parallel assembly
of three pouch cells.

To create the ParallelAssembly object, use the Cell object and specify the NumParallelCells
property.

batteryparallelassembly = ParallelAssembly(Cell = batterycell,...
 NumParallelCells = 3, ...
 ModelResolution = "Detailed");

Create Module Object

A battery module comprises multiple parallel assemblies connected in series. In this example, you
create a battery module of four parallel assemblies, with a gap between each parallel assembly of
0.005 meters, and a lumped model resolution. You also create another Module object with a detailed
model resolution.

To create these Module objects, use the ParallelAssembly object and specify the
NumSeriesAssemblies, InterParallelAssemblyGap, and ModelResolution properties.

lumpedbatterymodule = Module(ParallelAssembly = batteryparallelassembly,...
 NumSeriesAssemblies = 4, ...
 InterParallelAssemblyGap = simscape.Value(0.005,"m"));

detailedbatterymodule = Module(ParallelAssembly = batteryparallelassembly,...
 NumSeriesAssemblies = 4, ...
 InterParallelAssemblyGap = simscape.Value(0.005,"m"), ...
 ModelResolution = "Detailed");

Create ModuleAssembly Object

A battery module assembly comprises multiple battery modules connected in series or in parallel. In
this example, you create a battery module assembly of three different modules, with a gap between
each module of 0.01 meters. By default, the ModuleAssembly object electrically connects the
modules in series.

To create the ModuleAssembly object, use the Module object and specify the
CoolantThermalPath and the InterModuleGap property.

batteryModuleAssembly = ModuleAssembly(Module = [detailedbatterymodule,repmat(lumpedbatterymodule,1,5),detailedbatterymodule],...
 CoolantThermalPath = "CellBasedThermalResistance", ...
 InterModuleGap = simscape.Value(0.05,"m"))

batteryModuleAssembly =
 ModuleAssembly with properties:

 Build Model of Battery Module Assembly with Multi-Module Cooling Plate

4-11

 Module: [1×7 simscape.battery.builder.Module]

Show all properties

Add Cooling Plate to Module Assembly

To add a single cooling plate across all battery modules, you must first define a cooling plate
boundary. Set the CoolingPlate property of the ModuleAssembly object to "Bottom".

batteryModuleAssembly.CoolingPlate = "Bottom";

To specify the desired cooling plate block from the Simscape™ Battery™ library, use the
CoolingPlateBlockPath property. In this example, you use the Parallel Channels block to model
the cooling plate.

batteryModuleAssembly.CoolingPlateBlockPath = "batt_lib/Thermal/Parallel Channels";

To obtain higher resolution in the temperature and state of charge signals for battery control, you can
use different model resolutions for each module inside the module assembly. To parameterize the
cooling plate, you can visualize the thermal node information at module assembly level. This thermal
node information propagates to the generated model after you call the buildBattery function.

Alternatively, to individually define cooling plates to each module, modify the CoolingPlate and
CoolingPlateBlockPath properties of each module inside the ModuleAssembly or Pack objects.

View Information on Thermal Node Connectivity

To visualize the thermal connectivity information from the module assembly, use the ThermalNodes
property.

thermalNodes = batteryModuleAssembly.ThermalNodes.Bottom;
disp(thermalNodes)

4 Examples

4-12

 Locations: [29×2 double]
 Dimensions: [29×2 double]
 NumNodes: 29

This property contains information regarding the thermal interface between the battery and the
cooling plate, including the number of nodes, the XY location of the interface areas, and the
dimension of each interface area.

disp(thermalNodes.NumNodes)

 29

disp(thermalNodes.Locations)

 0.1800 0.0050
 0.1800 0.0160
 0.1800 0.0270
 0.1800 0.0420
 0.1800 0.0530
 0.1800 0.0640
 0.1800 0.0790
 0.1800 0.0900
 0.1800 0.1010
 0.1800 0.1160
 0.1800 0.1270
 0.1800 0.1380
 0.1800 0.2645
 0.1800 0.4575
 0.1800 0.6505
 0.1800 0.8435
 0.1800 1.0365
 0.1800 1.1630
 0.1800 1.1740
 0.1800 1.1850
 0.1800 1.2000
 0.1800 1.2110
 0.1800 1.2220
 0.1800 1.2370
 0.1800 1.2480
 0.1800 1.2590
 0.1800 1.2740
 0.1800 1.2850
 0.1800 1.2960

disp(thermalNodes.Dimensions)

 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3450 0.1430

 Build Model of Battery Module Assembly with Multi-Module Cooling Plate

4-13

 0.3450 0.1430
 0.3450 0.1430
 0.3450 0.1430
 0.3450 0.1430
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100
 0.3300 0.0100

Visualize Battery ModuleAssembly and Check Model Resolution

To obtain the number of Simscape Battery(Table-based) blocks used for the simulation, use the
NumModels property of your ModuleAssembly object.

disp(batteryModuleAssembly.NumModels)

 29

To visualize the ModuleAssembly object before you build the system model and to view its model
resolution, use the BatteryChart object. Create the figure where you want to visualize your
ModuleAssembly.

f = uifigure(Color="w");
tl = tiledlayout(1,2,"Parent",f,"TileSpacing","Compact");

Then use the BatteryChart object to visualize the battery module. To view the model resolution of
the module assembly, set the SimulationStrategyVisible property of the BatteryChart object
to "On".

nexttile(tl)
batteryModuleAssemblyChart1 = BatteryChart(Parent = tl, Battery = batteryModuleAssembly);
nexttile(tl)
batteryModuleAssemblyChart2 = BatteryChart(Parent = tl, Battery = batteryModuleAssembly, SimulationStrategyVisible = "On");

4 Examples

4-14

Build Simscape Model of ModuleAssembly Object

After you create your battery objects, you need to convert them into Simscape models to use them in
block diagrams. You can then use these models as reference for your system integration and
requirement evaluation, cooling system design, control strategy development, hardware-in-the-loop,
and many more applications.

To create a library that contains the Simscape Battery model of the ModuleAssembly object, use the
buildBattery function. To create a script where you can individually define the inter-cell thermal
resistance parameters for each thermal connection, as well as all other parameters within your
battery, set the MaskParameters argument of the buildBattery function to "VariableNames".

buildBattery(batteryModuleAssembly,"LibraryName","multiModuleCoolingPlate", ...
 "MaskParameters","VariableNames" ,...
 "MaskInitialTargets","VariableNames");

This function creates the multiModuleCoolingPlate_lib and multiModuleCoolingPlate SLX
library files in your working folder. The multiModuleCoolingPlate_lib library contains the
Modules and ParallelAssemblies sublibraries.

 Build Model of Battery Module Assembly with Multi-Module Cooling Plate

4-15

To access the Simscape models of your Module and ParallelAssembly objects, open the
multiModuleCoolingPlate_lib SLX file, double-click the sublibrary, and drag the Simscape
blocks in your model.

The multiModuleCoolingPlate library contains the Simscape models of your ModuleAssembly
object.

4 Examples

4-16

See Also
Battery Builder | Parallel Channels

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7
• “Connect Cooling Plate to Battery Blocks” on page 3-2

 Build Model of Battery Module Assembly with Multi-Module Cooling Plate

4-17

Analyze Battery Spatial Temperature Variation During Fast
Charge

This example shows how the temperature gradient over the cell surface varies during the fast
charging of a battery. Fast charging is one of the key enablers for the adoption of battery electric
vehicles. Fast charging pushes a considerable amount of current inside the battery. This process
produces a lot of heat. It is important to understand how temperatures spatially vary in a battery and
how this affects its long term warranty. Typically, to ensure a good battery life with uniform
degradation, the temperature gradient over the cell surface should not exceed around five or six
degrees centigrade. This example uses Simscape™ Battery™ to model the cell electrical dynamics
and the PDE Toolbox™ to generate the reduced order model (ROM) that describes the battery 3-D
thermal model. This example uses a 50Ahr battery (Valance:U27_36XP) and charges it for 10 minutes
from an initial state of charge (SOC) of 15%. Then, the example analyzes the maximum gradient in
the cell temperature.

Build Battery Model

To achieve optimum life and safety, the batteries on an electric vehicle are maintained between 20
and 35 degree C. To avoid non-uniform degradation, you must maintain the gradient of temperature
over the cell surface as low as possible. Non-uniform degradation leads to batteries fading faster than
the manufacturer's specifications.

Pre-parameterize the Battery

This figure shows how to parameterize the Battery (Table-Based) block with the available pre-
parameterizations. For a full list of the preparameterized components in the Battery (Table-Based)
block of Simscape Battery, see “Predefined Parameterization”.

4 Examples

4-18

In this example, a Valance:U27_36XP battery is selected from the pre-parameterized Battery (Table-
Based) block inside the Simscape Battery library. The Valance:U27_36XP battery measures 306mm in
length, 172mm in width, and 205mm in height. The positive and the negative terminals are hexagonal
ports at the top of the battery casing. In this example, the enclosure thickness (3 mm) and the tab
dimensions have been assumed as there was not enough data available.

Model Battery Thermal Behavior with PDE Toolbox™

A ROM from the PDE Toolbox spatially models the battery thermal behavior.

 Analyze Battery Spatial Temperature Variation During Fast Charge

4-19

To build a 3-D model of the battery for simulation, run the sscv_setupROMmodelForSimscape MLX
file, that uses PDE toolbox to generate a ROM from a detailed 3-D representation. The
sscv_setupROMmodelForSimscape MLX file contains parameters to define the battery size and
specify the initial conditions and the boundary conditions. All battery boundaries are adiabatic,
except for the bottom surface. The bottom surface uses a function to declare thermal-resistance-
based settings for the boundary.

The battery is divided into a jelly roll section, cell tabs, and the outer enclosure. The
sscv_setupROMmodelForSimscape MLX file defines the set of thermal properties for each of these
battery regions. Each region has its own separate heat generation definition. The electrical losses are
computed using the Simscape Battery (Table-Based) library component block. The battery
electrochemical losses from the pre-parameterized battery block are the input heat source to the jelly
roll section. The tab heat source is computed based on its resistance, the current flowing through the
battery, and the weld resistance defined at the junctions. The enclosure does not have any heat
generation. A custom component incorporates the battery thermal model in Simscape. To generate a
ROM that you can export to Simscape, run the sscv_setupROMmodelForSimscape MLX file. This
example uses a pre-generated ROM stored inside the
sscv_BatteryCellSpatialTempVariation_rom MAT file.

load('sscv_BatteryCellSpatialTempVariation_rom.mat');

To update or run the ROM, at the MATLAB Command Window, run:

edit sscv_setupROMmodelForSimscape.mlx

4 Examples

4-20

The pde_rom workspace variable comprises all data related to the ROM from the PDE Toolbox that
defines the cell thermal model. The prop structure of the pde_rom variable defines all the physical
parameters for the battery:

pde_rom.prop

ans = struct with fields:
 initialTemperature: 300
 cellTab_weldR: 7.5000e-04
 coolingArea_sqm: 0.0526
 cell_width_mm: 306
 cell_thickness_mm: 172
 cell_height_mm: 225
 cellCasing_thickness_mm: 5
 cellTab_height_mm: 8
 cellTab_radius_mm: 9
 volume: [1x1 struct]
 cellThermalCond: [1x1 struct]
 tabThermalCond: 386
 casingThermalCond: 50
 thermalConductivity: [1x1 struct]
 density: [1x1 struct]
 spHeat: [1x1 struct]
 cellThermalMass: 7.3314e+03

The density, spHeat, thmCond, and volume fields of this structure contain details on the material
density, specific heat, thermal conductivity, and the volume of different battery sections (jelly roll,
enclosure, tabs). The cell thermal conductivities [W/m.K] in the in-plane and through-plane directions
are:

pde_rom.prop.cellThermalCond

ans = struct with fields:
 inPlane: 80
 throughPlane: 2

The pde_rom.prop.thmCond.Jelly parameter sets the directionality for the battery thermal
conductivity. The battery bottom cooling area is:

pde_rom.prop.coolingArea_sqm

ans = 0.0526

To visualize the battery, at the MATLAB Command Window, enter:

run('sscv_plotBatteryCellGeometry')

 Analyze Battery Spatial Temperature Variation During Fast Charge

4-21

The red marks in the figure indicates that the battery has three thermocouples attached at the top. To
add and define more thermocouples at any location, use the sscv_setupROMmodelForSimscape.m
file.

If you change the battery dimensions or thermal properties, you must regenerate the ROM. To
regenerate the ROM, run the sscv_setupROMmodelForSimscape.m file with the updated battery
parameters. To edit any parameter, open the sscv_setupROMmodelForSimscape.m file and apply
your changes. A Simscape custom component exports the thermal model defined in pde_rom. The
matrices in pde_rom are parameters for the Simscape custom component and are used to solve the
energy equation in the battery.

Implement Battery Electrical and Thermal Models

This figure shows how the battery electrical and thermal models are integrated in the larger circuit
system in Simscape.

4 Examples

4-22

This figure shows the battery electrical and thermal modelling implementations. The Simscape
custom component, 3D_ThermalModel block, contains the ROM implementation for the battery
thermal modelling. The battery electrical model computes the losses for the input nodes (Qcell,
Qtabp, Qtabn) of the thermal model.

 Analyze Battery Spatial Temperature Variation During Fast Charge

4-23

The battery subsystem is ready for integration inside any circuit. After the simulation, you can
reconstruct back the 3-D thermal solution from the custom component outputs. The coolant control,
based on the Battery Coolant Control block from Simscape Battery, switches the flow on and off based
on the cell temperature.

Simulate for Fast Charge

The battery connects to a Charger block that feeds in the charging current into the circuit. A time
varying load is connected in parallel to the battery to account for auxiliary power requirements from
the coolant pump, chiller and heater. The Option parameter in the Thermal Inputs block defines the

4 Examples

4-24

battery electrical properties. When you set this parameter to 0, the battery temperature is equal to
the average temperature of all PDE node temperatures. When you set this parameter to any value
greater than one, the temperature is equal to the temperature measured from a thermocouple with
the index or number you specified in the Option parameter. This is important as the thermocouples
are placed on the battery surface and the core temperature might differ from the thermocouple
location.

Set a simulation time of 10 minutes for a fast charge.

totalSimulationTime=600;

Set the initial conditions.

initialStateOfCharge=0.15;
coolantTemperature_K=300;

Define the heat removal rate due to cooling system design and the coolant flow.

coolantThermalR=15; % W/K

Set the maximum charge rate (C rate) as a function of the cell temperature.

cellMaxCurrVec_T=[263 273 283 293 303 313]; % Temperature
cellMaxCurrVec_C=[0.5 0.75 1.0 1.5 1.9 2.2];% C rate

Set the coolant pump power loss to a constant value of 50W.

lossAuxPowSources_W=50;

Set the chiller or heater losses as a function of the coolant temperature difference with the ambient.

chillerHeaterLosses_dT=[0 20 30 40 50]; % |Tcoolant~Tambient|
chillerHeaterLosses_W=[0 5 10 15 20]; % W

Run the simulation.

sim('sscv_BattSpatialTempVar.slx')
pde_results.pde_T_values=squeeze(...
 logsout_BatteryCellSpatialTempVariation.find("Tn").Values.Data);

Simulation Results

Plot the charge current with time.

plot(simlog_sscv_BattSpatialTempVar.Charger.A.series.time/60,...
 abs(simlog_sscv_BattSpatialTempVar.Charger.A.series.values));
xlabel('Time (min)');ylabel('Current (A)');
title('Battery Charger Current');

 Analyze Battery Spatial Temperature Variation During Fast Charge

4-25

Plot the temperature measured at probe locations.

plot(logsout_BatteryCellSpatialTempVariation.find("Tp").Values.Time/60, ...
 squeeze(logsout_BatteryCellSpatialTempVariation.find("Tp").Values.Data)');
xlabel('Time (min)');ylabel('Temperature (K)');
title('Thermocouple Measurements');

4 Examples

4-26

Plot the maximum temperature gradient in the battery based on all the nodal temperatures in
detailed 3-D solution.

plot(logsout_BatteryCellSpatialTempVariation.find("dT").Values.Time/60, ...
 squeeze(logsout_BatteryCellSpatialTempVariation.find("dT").Values.Data)');
xlabel('Time (min)');ylabel('Temperature difference (K)');
title('Maximum Temperature Gradient');

 Analyze Battery Spatial Temperature Variation During Fast Charge

4-27

Visualize the temperature distribution in the battery cell using the Visualize PDE Results Live
Editor task.

First, construct the full PDE solution using the ROM degrees-of-freedom, modal temperatures, and
time data from simulation.

modalTemperature = squeeze(Tmodal.Data);
timeMinute = logsout_BatteryCellSpatialTempVariation.find("dT").Values.Time/60;

Use ROM object in pde_rom and call the reconstructSolution method to obtain a transient
thermal results object.

Rtransient = pde_rom.rom.reconstructSolution(modalTemperature,timeMinute);

On the Live Editor tab, select Task > Visualize PDE Results to insert the task. In the Select
results section of the task, select Rtransient from the drop-down list.

4 Examples

4-28

% Data to visualize
meshData = Rtransient.Mesh;
nodalData = Rtransient.Temperature(:,601);

% Create PDE result visualization
resultViz = pdeviz(meshData,nodalData, ...
 "Title","Temperature", ...
 "ColorLimits",[300 313.1], ...
 "Transparency",0.55);

 Analyze Battery Spatial Temperature Variation During Fast Charge

4-29

% Clear temporary variables
clearvars meshData nodalData

The maximum temperature gradient during the 10 minute charge process is equal to around 5
degrees, which is reasonable. Higher temperature gradients might lead to the redesign of the cooling
system or change in the fast charge profile to limit the non-uniformity in cell degradation with time.

See Also
Battery (Table-Based) | Battery Coolant Control

4 Examples

4-30

Get Started with Battery Builder App

This example shows how to use the Battery Builder app to interactively create a battery pack with
thermal effects and build a Simscape™ model that you can use as a starting point for your
simulations.

Using this app, you can interactively import existing battery objects or build them from scratch,
explore and edit properties, and view the battery hierarchy and 3-D visualization. You can then build
the Simscape system model of your objects and use it as a reference in your simulations. You can also
export the objects in your workspace.

Hierarchy of Battery Pack

To create the system model of a battery pack, you must first create the Cell, ParallelAssembly,
Module, and ModuleAssembly objects that comprise the battery pack. After you create your battery
pack according to your specifications, you can build it to generate a library in your working folder
that contains a system model block of this battery pack. You can use this system model as a reference
in your simulations.

This figure shows the hierarchy of a battery pack object in a bottom-up view:

A battery pack comprises multiple module assemblies. These module assemblies, in turn, comprise a
number of battery modules connected electrically in series or in parallel. The battery modules are
made of multiple parallel assemblies which, in turn, comprise a number of battery cells connected
electrically in parallel under a specific topological configuration or geometrical arrangement.

Open Battery Builder App

Open the Battery Builder app.

 Get Started with Battery Builder App

4-31

batteryBuilder;

The app automatically loads some example objects that you can explore to immediately gain some
visual insight into the app functionalities. You can view the properties of these objects but you cannot
modify them.

The Battery Builder app comprises six main components divided into four panels and two tabs.

• Battery Browser — Battery objects in the current active session of the app. This panels displays
all the objects that you create or import inside the app.To edit the properties of an object or to
visualize its hierarchy or 3-D plot, you must first select it from this panel.

• Battery Hierarchy — Hierarchy of the selected battery object. This panel displays all the
subcomponents of the object. Selecting any object in this panel shows its 3-D chart and properties
in the respective panels.

• Selected Battery — 3-D visualization of the selected battery object. To modify the visualization
settings of this panel, use the options in the Battery Chart tab.

• Battery Properties — Properties of the selected battery object. This panel displays all the read-
only and editable properties of the object. Each battery object comprises its own properties.

• Battery Buider — Tab that comprises the main functionalities of the app. Use the buttons in this
tab to import, create, delete, duplicate, export, and build battery objects.

• Battery Chart — Tab that comprises the display options of the 3-D battery chart. In this tab, you
can edit properties such as axes labels, axes direction, title of the plot, and lights. You can also
check the current simulation strategy and model resolution of the selected battery object.

Create Cell

To create the Pack object, first create a Cell object with the pouch geometry. An electrochemical
battery cell is the fundamental building block in the manufacturing process of larger battery systems.
To obtain the required energy and voltage levels, multiple battery cells are typically connected
electrically in parallel and/or in series. To meet the battery packaging and space requirements, you
can arrange the battery cells in many different topologies or geometrical configurations.

4 Examples

4-32

To mirror real-world behavior, the Simscape Battery™ Cell object is the foundational element for the
creation of a battery pack system model. To create a Cell object, under the Battery Builder tab, in
the Create section of the toolstrip, select Cell.

The Battery Browser panel on the left now contains the Cell object.

To get started, you must first define a pouch geometry for this cell:

1 Select the NewCell object in the left Battery Browser panel of the app. Now the Properties
panel on the right of the app displays all its properties.

2 In the right Cell Properties panel, in the Geometry section, set the Geometry property to
Pouch.

With this action, you create a PouchGeometry object and link it to your Cell object. The Geometry
section of the Cell Properties panel now displays properties related to the pouch geometry.

 Get Started with Battery Builder App

4-33

For this example, you create a pouch cell with a height of 0.1 m, a length of 0.3 m, and opposed tabs.
In the Cell Properties panel, under the Geometry section, edit the Length, Height, and
TabLocation properties accordingly.

You can also simulate the thermal effects of the battery cell by using a simple 1-D model. To simulate
the thermal effects of the battery cell, in the Cell Properties panel, under the Cell Model Options
section, set the thermal_port property to model and the T_dependence property to yes. You can
define the thermal boundary conditions for battery objects only if you define a thermal model at the
cell level.

Finally, to apply your changes, click Apply.

4 Examples

4-34

The Selected Battery panel now shows a 3-D visualization of your pouch cell.

 Get Started with Battery Builder App

4-35

Create Parallel Assembly

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement.

To create the ParallelAssembly object, under the Battery Builder tab, in the Create section of
the toolstrip, select Parallel Assembly.

You must now link the Cell object to this parallel assembly. In this example, the parallel assembly
comprises three pouch cells.

1 In the Parallel Assembly Properties panel, under the ParallelAssembly Properties section,
click the Select... button of the Cell property.

4 Examples

4-36

2 In the new window that appears, select the NewCell object and click OK.
3 In the Parallel Assembly Properties panel, under the Parallel Assembly Properties section,

set the NumParallelCells property to 3.
4 Click Apply to apply your changes.

The NewCell object is now a subcomponent (or child component) of this parallel assembly. After you
apply your changes, you can view the hierarchy of the ParallelAssembly object in the Battery
Hierarchy panel.

The Selected Battery panel now shows a 3-D visualization of your parallel assembly.

 Get Started with Battery Builder App

4-37

Create Module

A battery module comprises multiple parallel assemblies connected in series.

To create the Module object, under the Battery Builder tab, in the Create section of the toolstrip,
select Module.

You must now link the ParallelAssembly object to this module:

1 In the Module Properties panel, under the Module Properties section, click the Select...
button of the ParallelAssembly property.

4 Examples

4-38

2 In the new window that appears, select the NewParallelAssembly object and click OK.

The NewParallelAssembly object is now a subcomponent (or child component) of this module.
After you apply your changes, you can view the hierarchy of the Module object in the Battery
Hierarchy panel.

In this example, the module comprises 14 parallel assemblies with a gap of 0.005 m between each
assembly. In the Module Properties panel, under the Module Properties section, set the
NumSeriesAssemblies property to 14 and the InterParallelAssemblyGap property to 0.005.

Finally, to apply your changes, click Apply.

 Get Started with Battery Builder App

4-39

The Selected Battery panel now shows a 3-D visualization of your module.

4 Examples

4-40

Create Module Assembly

A battery module assembly comprises multiple battery modules connected in series or in parallel. In
this example, the battery module assembly comprises two identical modules with a gap of 0.1 m
between each module. By default, the ModuleAssembly object electrically connects the modules in
series

To create the ModuleAssembly object, under the Battery Builder tab, in the Create section of the
toolstrip, select Module Assembly.

You must now link the Module object to this module assembly:

 Get Started with Battery Builder App

4-41

1 In the Module Assembly Properties panel, under the Module Assembly Properties section,
click the Select... button of the Module property.

2 In the new window that appears, create a module assembly that comprises two identical modules
by selecting the NewModule object and clicking Add twice.

Two NewModule objects are now subcomponents of this module assembly. After you apply your
changes, you can view the hierarchy of the ModuleAssembly object in the Battery Hierarchy panel.

Now specify the gap between modules. In the Module Assembly Properties panel, under the
Module Assembly Properties section, set the InterModuleGap property to 0.1.

Finally, to apply your changes, click Apply.

4 Examples

4-42

The Selected Battery panel now shows a 3-D visualization of your module assembly.

 Get Started with Battery Builder App

4-43

Create Pack

You now have all the foundational elements required to create your battery pack. A battery pack
comprises multiple module assemblies connected in series or in parallel. In this example, you create a
battery pack of five identical module assemblies with a gap of 0.01 m between each module assembly.

To create the Pack object, under the Battery Builder tab, in the Create section of the toolstrip,
select Pack.

You must now link the ModuleAssembly object to this pack:

4 Examples

4-44

1 In the Pack Properties panel, under the Pack Properties section, click the Select... button of
the ModuleAssembly property.

2 In the new window that appears, create a pack that comprises five identical module assemblies
by selecting the NewModuleAssembly object and clicking Add five times.

Five NewModuleAssembly objects are now subcomponents of this pack. After you apply your
changes, you can view the hierarchy of the Pack object in the Battery Hierarchy panel.

Now specify the gap between module assemblies. In the Pack Properties panel, under the Module
Assembly Properties section, set the InterModuleAssemblyGap property to 0.01.

Finally, to apply your changes, click Apply.

 Get Started with Battery Builder App

4-45

The Selected Battery panel now shows a 3-D visualization of your pack.

4 Examples

4-46

Define Thermal Boundary Conditions

For your Pack object, you can define the thermal paths to the ambient air, the coolant, and the
location of the cooling plate by specifying the AmbientThermalPath, CoolantThermalPath, and
CoolingPlate properties, respectively.

Define Ambient Thermal Path

To define a thermal path to ambient air, in the Pack Properties panel, under the Thermal Model
Options section, set the AmbientThermalPath property to CellBasedThermalResistance. The
value you set automatically propagates to all the subcomponent battery objects inside this Pack
object. However, this change does not propagate to the other battery objects in your Battery Builder
app session.

 Get Started with Battery Builder App

4-47

This command adds and connects a Thermal Resistor block to every thermal port in a cell model. The
other thermal ports from all the resistors connect to a single thermal node. You can then connect this
thermal node to a constant temperature source or other blocks in the Simscape libraries.

Define Coolant Thermal Path

To define a thermal path from cells to the coolant, in the Pack Properties panel, under the Thermal
Model Options section, set the CoolantThermalPath property to
CellBasedThermalResistance. The value you set automatically propagates to all the
subcomponent battery objects inside this Pack object. However, this change does not propagate to
the other battery objects in your Battery Builder app session.

4 Examples

4-48

This command adds and connects one Thermal Resistor block to every thermal port in a cell model.
The other thermal ports from all the resistors connect to a single thermal node. You can then connect
this thermal node to a constant temperature source or other blocks in the Simscape libraries. You can
individually parameterize each thermal resistance with a different value. You can use the Thermal
Resistor block to model the conduction resistance relative to the cell, the thermal interface materials,
and other materials along the path to the coolant.

If you define a cooling system, such as a cooling plate for the battery module, the software connects
the other thermal port of the Thermal Resistor block to an array of thermal nodes connector.

Define Cooling Plate Location

To define the location of the cooling plate on your battery pack, in the Pack Properties panel, under
the Thermal Model Options section, set the CoolingPlate property to Top or Bottom.
Alternatively, specify both options at the same time. You can also specify which cooling plate block to
assign to the Pack object at the boundary that the CoolingPlate property defines. Set the
CoolingPlateBlockPath property to batt_lib/Thermal/Edge Cooling to automatically assign
the Edge Cooling block when you build the Simscape model.

The value of this property automatically propagates to all the subcomponent battery objects inside
this Pack object. However, this change does not propagate to the other battery objects in your
Battery Builder app session.

 Get Started with Battery Builder App

4-49

This command connects each thermal node of each cell model in your battery pack to a
corresponding element inside an array of thermal nodes connector.

View Model Resolution of Battery Pack

To obtain the number of Simscape Battery (Table-Based) blocks that the pack simulation uses, in the
Pack Properties panel, under the Read-Only Properties section, view the NumModels property.

To view the model resolution of the pack, under the Battery Chart tab, in the Simulation Strategy
section of the toolstrip, check the Visible box.

4 Examples

4-50

The 3-D plot in the Selected Battery panel now shows the simulation strategy for the Pack object.
The pack uses one electrical model for each of its modules.

Build Simscape Model for Battery Pack Object

After you create your battery objects, you need to convert them into Simscape models to use them in
block diagrams. You can then use these models as a reference for architecture evaluation in early
development stages, software and hardware development, system integration and requirement
evaluation, cooling system design, control strategy development, hardware-in-the-loop, and many
more applications.

To create a library that contains the Simscape Battery model of the Pack object you create in this
example, in the Battery Browser panel, select the NewPack object. Then, under the Battery
Builder tab, in the Library section of the toolstrip, select Create Library.

 Get Started with Battery Builder App

4-51

In the new window, specify the folder in which you want to save the library, the library name, and
whether you want to generate scripts with all the run-time parameters and initial conditions required
for simulation.

4 Examples

4-52

Click Create Library to generate the library model of your battery object in the specified folder.
Open this model to access your battery objects as Simscape blocks.

To programmatically build a more detailed model of a battery pack, see “Build Detailed Model of
Battery Pack From Pouch Cells” on page 4-148.

See Also
Battery Builder

 Get Started with Battery Builder App

4-53

Related Examples
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-54

Battery Cell Characterization for Electric Vehicles

This example uses the test method defined in [1 on page 4-68] to characterize a battery cell for
electric vehicle applications. First you generate a high pulse power characterization (HPPC) by using
Simscape™ Battery™ blocks and an in-built function to derive the battery cell parameters. Then you
compare the model to the original battery model under typical drive-profile loading conditions.

Battery HPPC Test Data

A typical HPPC data is a set of discharge-charge pulses, applied to a battery at different state of
charge (SOC) and at a given temperature. Typically, the test equipment is fully charged to undergo
these pulse tests. At the end of every sequence, the SOC is discharged by a third of the C-rate. A long
rest time of one hour is recommended for the cells to relax after every sequence of discharge-charge
pulses. This process continues until it covers all points of interest in the SOC range.

This figure shows a typical discharge-charge profile. For more information, see [1 on page 4-68].

 Battery Cell Characterization for Electric Vehicles

4-55

4 Examples

4-56

Parameter Estimation Method

The Battery (Table-Based) block in Simscape Battery uses the equivalent circuit modelling approach.
You can capture different physical phenomena of a cell by connecting multiple RC pairs in series. In
Battery (Table-Based) block, you can select up to five RC pairs. You can derive the value of the
resistance and time constant parameters from the HPPC test data.

The voltage response of a battery cell is equal to:

V = V0− I × Ro− I × ∑Ri 1 − exp − t
τi

,

where

• V0 is the cell open circuit potential.
• Ro is the cell ohmic resistance.
• Ri and τi are the cell i-th RC pair resistance and time constant values.
• I is the current passing through the cell.

All parameters are a function of the SOC and cell temperature. Since HPPC tests are typically
performed at constant temperatures, you can ignore the temperature dependence in the parameter
estimation. The ohmic resistance is estimated from the sudden voltage change during discharge or
charge pulses (V1 to V2 or V5 to V6, in the figure above). The RC pairs are fit based on voltage
relaxation profile just after the discharge or charge pulses.

The ParameterEstimationLUTbattery function estimates the battery parameters and:

1 Takes the HPPC profile over entire SOC range as input.
2 Determines all the pulse location and the points V1 - V9 in the above figure.
3 Calculates the ohmic resistance value.
4 Fits the RC parameters by using either MATLAB fminsearch or the Curve Fitting Toolbox™

(fminsearch or curvefit).
5 Calculates the cell open circuit potential (point V1, at a given SOC point, in the figure above).
6 Outputs all parameters to a workspace variable.

Generate Synthetic Test Data

Run the CellCharacterizationHPPC SLX file to generate the current and voltage data for the
selected cell.

 Battery Cell Characterization for Electric Vehicles

4-57

The HPPC Profile MATLAB function defines the discharge-charge protocols and the test method.

hppcSim = sim('CellCharacterizationHPPC.slx');

The hppcSim workspace variable contains the current and voltage data for the HPPC profile used for
battery cell parameter estimation.

Fit Parameters to Test Data

Load the HPPC data and plot the voltage and current values.

hppcTest = hppcSim.batteryHPPC_profile.extractTimetable;
time = seconds(hppcTest.Time);
current = hppcTest.current;
voltage = hppcTest.voltage;

figure('Name','HPPC data - current pulses')
plot(time,current);
xlabel('Time (s)');ylabel('Current (A)')

4 Examples

4-58

figure('Name','HPPC data - voltage response')
plot(time,voltage);
xlabel('Time (s)');ylabel('Voltage (V)')

Define the cell capacity (Ahr) as during the HPPC tests and the initial SOC (0-1).

cellCapacity = 27;
cellInitialSOC = 1;
cell_prop = [cellCapacity; cellInitialSOC];

Define the pulse current magnitudes, in Amperes.

 Battery Cell Characterization for Electric Vehicles

4-59

maxDischargeCurr = 81;
maxChargeCurr = 61;
constCurrSweepSOC = 9;

The ParameterEstimationLUTbattery function detects a pulse (sudden change in current) based
on the value you specify for the toleranceVal variable. If the function detects a sudden change in
discharge current, it compares this discharge current to the value of the maxDischargeCurr
variable. If their difference is within the value of the toleranceVal variable, the function identifies
the pulse. This process also applies to the detection of the charge pulse (maxChargeCurr) and the
SOC sweep (constCurrSweepSOC).

toleranceVal = 1;
hppc_protocol = [maxDischargeCurr;...
 maxChargeCurr;...
 constCurrSweepSOC;...
 toleranceVal];

Define the number of RC pairs to consider and the initial guess for resistance and the time constant
values.

numRCpairs = 1;
initialGuess_RC = [1e-3 20]; % [R1, Tau1, R2, Tau2]

result=batt_BatteryCellCharacterization.ParameterEstimationLUTbattery(...
 [time, current, voltage],...
 cell_prop,...
 hppc_protocol,...
 numRCpairs,...
 initialGuess_RC,...
 "fminsearch");

Read input data
*** Number of discharge pulses =20
*** Number of charge pulses =20
*** Number of SOC sweep pulses =19
Extracted pulse data from input data
Calculated ohmic resistance
*** Calculated RC parameters for discharge
*** Calculated RC parameters for charge
*** Calculated rmse for the fit
Calculated RC parameters
Completed OCV data extraction

% To use curvefit toolbox for data fit, type "curvefit"
% instead of "fminsearch". The curvefit function requires
% the Curve Fitting Toolbox license.

To check if the function identified the correct pulses, at a MATLAB Command Window, enter:

plotAndVerifyPulseData(result);

4 Examples

4-60

To verify the fit, at a MATLAB Command Window, enter:

fitDataEverySOCval = 0.001;
fitDataForSOCpts = 0:fitDataEverySOCval:1;
verifyDataFit(result,fitDataEverySOCval,1);

To save the parameters, enter:

cellParameters = exportResultsForLib(result,...
 fitDataForSOCpts);

 Battery Cell Characterization for Electric Vehicles

4-61

4 Examples

4-62

 Battery Cell Characterization for Electric Vehicles

4-63

To save the generated parameters in a file, at the MATLAB Command Window, run:

save batt_BatteryCellCharacterizationResults.mat cellParameters

This example uses parameters stored in batt_BatteryCellCharacterizationResults MAT file
to verify the accuracy of the fit. If the estimated parameters do not look reasonable, try fitting them
with more RC pairs or try a different initial guess.

Verify Parameters with Drive Profiles

A large battery pack for electric vehicle (EV) uses the battery cell that you just parameterized. The
CellCharacterizationVerify.slx model uses a drive profile to compare the parameterized cell
against the original cell.

4 Examples

4-64

A typical load profile for a large battery pack (EV) is:

driveProfile = load('batt_BatteryCellCharacterizationForBEV_Ivst.mat');
maxCurrentPack = max(driveProfile.ans.Data)

maxCurrentPack = 89.5372

minCurrentPack = min(driveProfile.ans.Data)

minCurrentPack = -55.2423

figure('Name','Drive profile');
plot(driveProfile.ans.Time,driveProfile.ans.Data)
title('Drive profile data')
xlabel('Time (s)');
ylabel('Current (A)');

 Battery Cell Characterization for Electric Vehicles

4-65

To limit the cell maximum C-rate to a value of 1.5, the pack requires three cells in parallel. The Np
block in the CellCharacterizationVerify SLX file specifies the number of parallel cells. The
Computed Cell block in the SLX file simulates the parameterized cell. The number of RC pairs you
use in this script must be equal to the value you specified for the Charge Dynamics in the Computed
Cell block.

Run the CellCharacterizationVerify SLX file to compare the original and the parameterized
cells.

verifyRes = sim('CellCharacterizationVerify.slx');
resDriveProfile = verifyRes.CellCharacterization_DriveProfile.extractTimetable;

figure('Name','Error in voltage prediction');
plot(resDriveProfile.Time,resDriveProfile.V_err*1000);
title('Voltage Error (mV) Between Original and Parameterized Cell')
xlabel('Time (s)');
ylabel('Voltage Error (mV)');

4 Examples

4-66

figure('Name','Voltage profile for original and parameterized cell');
plot(resDriveProfile.Time,resDriveProfile.V);
title('Voltage (V) for Original and Parameterized Cell')
xlabel('Time (s)');
ylabel('Voltage (V)');
legend('Original Cell', 'Parameterized Cell')

If the error is not within acceptable limits, try with a different initial guess, a different number of RC
pairs, or by using a different fitting method (fminsearch, Curve Fitting Toolbox).

 Battery Cell Characterization for Electric Vehicles

4-67

If you want to characterize the battery at multiple temperatures, use this workflow to fit the
parameters at each individual temperature and then combine them inside the temperature dependent
block.

Reference

1 Christophersen, Jon P. Battery Test Manual For Electric Vehicles, Revision 3. United States: N. p.,
2015. Web. doi:10.2172/1186745

See Also
Battery (Table-Based)

Related Examples
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211

4 Examples

4-68

Build Model of Hybrid-Cell Battery Pack

This example shows how to build a Simscape™ system model of a hybrid-cell battery pack with two
sets of cell run-time parameters. The generated battery pack model contains two types of battery
modules, each with different battery cell components inside. Use this example to analyze the
performance effects of combining different battery cells within a single battery system, such as power
capability versus range.

To create the system model of a battery pack, you must first create the Cell, ParallelAssembly,
Module, and ModuleAssembly objects that comprise the battery pack, and then use the
buildBattery function. The buildBattery function creates a library in your working folder that
contains a system model block of a battery pack that you can use as reference in your simulations.
The run-time parameters for these models, such as the battery cell impedance or the battery open-
circuit voltage, are defined after the model creation and are therefore not covered by the Battery
Pack Builder classes. To define the run-time parameters, you can either specify them in the block
mask of the generated Simscape models or use the MaskParameters argument of the
buildBattery function. If you specify the MaskParameters argument, the function also generates
a parameterization script that helps you managing the run-time parameters of the different modules
and cells inside the pack.

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

Create Battery Pack Object in MATLAB

To create a battery pack, you must first design and create the foundational elements of the battery
pack.

This figure shows the overall process to create a battery pack object in a bottom-up approach:

 Build Model of Hybrid-Cell Battery Pack

4-69

A battery pack comprises multiple module assemblies. These module assemblies, in turn, comprise a
number of battery modules connected electrically in series or in parallel. The battery modules are
made of multiple parallel assemblies which, in turn, comprise a number of battery cells connected
electrically in parallel under a specific topological configuration or geometrical arrangement.

Create Cell Objects

To create the battery Module object, first create a Cell object of prismatic format.

prismaticgeometry = PrismaticGeometry(Height = simscape.Value(0.2,"m"),...
 Length = simscape.Value(0.35,"m"), Thickness = simscape.Value(0.07,"m"));

The PrismaticGeometry object allows you to define the pouch geometrical arrangement of the
battery cell. You can specify the height, length, and thickness of the cell by setting the Height,
Length, and Thickness properties of the PrismaticGeometry object. For more information on the
possible geometrical arrangements of a battery cell, see the CylindricalGeometry and
PouchGeometry documentation pages.

Now use this PrismaticGeometry object to create a prismatic battery cell and assign its name.

batterycell1 = Cell(Geometry = prismaticgeometry)

batterycell1 =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.PrismaticGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]
 Capacity: [1×1 simscape.Value]
 Energy: [1×1 simscape.Value]

4 Examples

4-70

Show all properties

batterycell1.Name = "CellChemistryType1";

To create a Module object with a different set of cell parameters, create a Cell object of prismatic
format and change its name.

batterycell2 = Cell(Geometry = prismaticgeometry)

batterycell2 =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.PrismaticGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]
 Capacity: [1×1 simscape.Value]
 Energy: [1×1 simscape.Value]

Show all properties

batterycell2.Name = "CellChemistryType2";

For more information, see the Cell documentation page.

Create ParallelAssembly Objects

A battery parallel assembly comprise multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. In this example, you create two
parallel assemblies of one prismatic cell each.

To create the ParallelAssembly objects, use the Cell object you created before and specify the
NumParallelCells property according to your design.

batteryparallelassembly1 = ParallelAssembly(Cell = batterycell1,...
 NumParallelCells = 1)

batteryparallelassembly1 =
 ParallelAssembly with properties:

 NumParallelCells: 1
 Cell: [1×1 simscape.battery.builder.Cell]
 Topology: "SingleStack"
 Rows: 1
 ModelResolution: "Lumped"

Show all properties

batteryparallelassembly2 = ParallelAssembly(Cell = batterycell2,...
 NumParallelCells = 1)

batteryparallelassembly2 =
 ParallelAssembly with properties:

 NumParallelCells: 1
 Cell: [1×1 simscape.battery.builder.Cell]
 Topology: "SingleStack"

 Build Model of Hybrid-Cell Battery Pack

4-71

 Rows: 1
 ModelResolution: "Lumped"

Show all properties

For more information, see the ParallelAssembly documentation page.

Create Module Objects

A battery module comprises multiple parallel assemblies connected in series. In this example, you
create two battery modules of 4 parallel assemblies each, with an intergap between each assembly of
0.005 meters.

To create the Module object2, use the ParallelAssembly objects you created in the previous step
and specify the NumSeriesAssemblies and InterParallelAssemblyGap properties.

batterymodule1 = Module(ParallelAssembly = batteryparallelassembly1,...
 NumSeriesAssemblies = 4, ...
 InterParallelAssemblyGap = simscape.Value(0.005,"m"), ...
 ModelResolution = "Lumped", ...
 StackingAxis="X")

batterymodule1 =
 Module with properties:

 NumSeriesAssemblies: 4
 ParallelAssembly: [1×1 simscape.battery.builder.ParallelAssembly]
 ModelResolution: "Lumped"
 SeriesGrouping: 4
 ParallelGrouping: 1

Show all properties

batterymodule2 = Module(ParallelAssembly = batteryparallelassembly2,...
 NumSeriesAssemblies = 4, ...
 InterParallelAssemblyGap = simscape.Value(0.005,"m"), ...
 ModelResolution = "Lumped", ...
 StackingAxis="X")

batterymodule2 =
 Module with properties:

 NumSeriesAssemblies: 4
 ParallelAssembly: [1×1 simscape.battery.builder.ParallelAssembly]
 ModelResolution: "Lumped"
 SeriesGrouping: 4
 ParallelGrouping: 1

Show all properties

For more information, see the Module documentation page.

Create ModuleAssembly Object

A battery module assembly comprises multiple battery modules connected in series or in parallel. The
battery module assembly in this example comprises the two modules you created before twice in an

4 Examples

4-72

alternating sequence. By default, the ModuleAssembly object electrically connects the modules in
series.

To create the ModuleAssembly object, use the Module objects you created in the previous step and
specify the InterModuleGap and NumLevels properties.

batterymoduleassembly = ModuleAssembly(Module = [batterymodule1,batterymodule2,batterymodule1,batterymodule2],...
 InterModuleGap = simscape.Value(0.02,"m"), ...
 NumLevels = 1)

batterymoduleassembly =
 ModuleAssembly with properties:

 Module: [1×4 simscape.battery.builder.Module]

Show all properties

For more information, see the ModuleAssembly documentation page.

Create Pack Object

You now have all the foundational elements to create your hybrid battery pack. A battery pack
comprises multiple module assemblies connected in series or in parallel. In this example, you create a
battery pack of two module assemblies.

To create the Pack object, use the ModuleAssembly object you created in the previous step.

batterypack = Pack(ModuleAssembly = repmat(batterymoduleassembly,1,2),...
 StackingAxis="Y");

For more information, see the Pack documentation page.

Visualize Battery Pack

To visualize the battery pack before you build the system model, use the BatteryChart object. To
add default axis labels to the battery plot, use the setDefaultLabels method of the BatteryChart
object.

batterypackchart = BatteryChart(Battery = batterypack);
batterypackchart.setDefaultLabels

 Build Model of Hybrid-Cell Battery Pack

4-73

For more information, see the BatteryChart documentation page.

Build Simscape Model for Battery Pack Object

After you have created your battery objects, you need to convert them into Simscape models to be
able to use them in block diagrams. You can then use these models as reference for your system
integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

To create a library that contains the Simscape Battery model of the Pack object you created in this
example, use the buildBattery function and set the MaskInitialTargets and MaskParameters
arguments. The MaskInitialTargets and MaskParameters arguments allow you to choose
between default numeric values or variable names for the parameters in each Module and Parallel
Assembly block in the generated library. If you set these arguments to "VariableNames", the
function generates a script with all the run-time parameters and initial conditions required for
simulation.

buildBattery(batterypack,"LibraryName","hybridBatteryPack",...
 "MaskInitialTargets","VariableNames",...
 "MaskParameters","VariableNames");

Generating Simulink library 'hybridBatteryPack_lib' in the current directory '/tmp/tp25cdee1f_uk-llebert-l' ...
Generating MATLAB script 'hybridBatteryPack_param' in the current directory '/tmp/tp25cdee1f_uk-llebert-l'

The buildBattery function creates the hybridBatteryPack_lib and hybridBatteryPack SLX
library files in your working directory. The hybridBatteryPack_lib library contains the Modules
and ParallelAssemblies sublibraries.

4 Examples

4-74

To access the Simscape models of your Module and ParallelAssembly objects, open the
hybridBatteryPack_lib. SLX file, double-click the sublibrary, and drag the Simscape blocks in
your model.

The hybridBatteryPack library contains the Simscape models of your ModuleAssembly and Pack
objects.

The Simscape models of your ModuleAssembly and Pack objects are subsystems. You can look
inside these subsystems by opening the hybridBatteryPack_lib SLX file and double-click the
subsystem.

MaskParameters and MaskInitialTargets

The MaskInitialTargets and MaskParameters arguments allow you to choose between default
numeric values or variable names for the parameters and initial conditions in each Module and
Parallel Assembly block in the generated library.

By setting the MaskParameters argument to VariableNames, the buildBattery function
generates a hybridBatteryPack_param M file where you can individually assign all the module
and cell parameters, like the resistance, the open circuit voltage, and other parameters, for all the
types of battery modules inside your battery pack. If you also set the MaskInitialTargets
argument to VariableNames, then the generated M file contains the mask parameter definition at
the beginning.

 Build Model of Hybrid-Cell Battery Pack

4-75

By setting the MaskInitialTargets argument to VariableNames, the buildBattery function
generates a hybridBatteryPack_param M file where you can individually assign the initial
temperature, state-of-charge, and other conditions, for all your battery modules in your battery pack.
If you also set the MaskParameters argument to VariableNames, then the generated M file
contains the initial targets definition at the end.

Check the effect of setting the MaskParameters and the MaskInitialTargets arguments to
VariableNames. Open the hybridBatteryPack_lib SLX file and navigate to the
ModuleAssembly1 subsystem by double-clicking the Pack1 subsystem. Double-click on the Module1
block to open the Property Inspector.

A specific variable name is associated to the values of each parameter in the Main section of the
Module1 block. You can then easily specify these values inside the hybridBatteryPack_param M
file without having to change them inside the model by opening the Property Inspector of each
block individually.

Copyright 2022 The MathWorks, Inc.

See Also
Battery Builder

Related Examples
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-76

Protect Battery During Charge and Discharge for Electric
Vehicle

This example shows how to efficiently charge and discharge a battery for an electric vehicle (EV) and
handle battery faults. Portable electronics and EV widely use li-ion batteries as power source due to
their high-energy density. But li-ion batteries also have safety issues due to extreme conditions such
as over-discharge, over-charge, high temperature, and low temperature. These extreme conditions
can damage the battery and effect its performance in the long term. In some cases they can cause
loss of stability which leads to thermal runaway.

In this example, two circuit breakers connect the positive terminal and the negative terminal of the
battery to the load circuit. Two more circuit breakers connect or disconnect the charging or
discharging circuits. A basic control strategy operates these circuit breakers to put the battery in
charge or discharge mode and to disconnect the battery during fault conditions.

Model Overview

Open the model batt_BatteryManagementSystem.slx

clearvars
disp('Start battery plant model simulations workflow');

Start battery plant model simulations workflow

% Open the model
open_system('batt_BatteryManagementSystem.slx');

Load parameter files

 Protect Battery During Charge and Discharge for Electric Vehicle

4-77

batt_BatteryManagementSystem_param; % Load model parameters
batt_packBTMSExampleLib_param; % Load battery pack parameters

Load data for LoadResistance and LoadCurrent for the drive run

load('batt_BatteryManagementSystem_Drive.mat');

Battery Module

The battery comprises a battery pack of 400V, generally used in electric vehicles. Since a single cell
cannot provide such voltage or power levels, multiple cells are connected in series and parallel to
create the desired battery pack. The battery pack in this example comprises 10 modules, each with
11 series-connected parallel sets (p-sets). Each p-set comprises three cells in series. All modules are
connected in series to form a pack of 330 cells.

To create the module used in the battery pack of this example, see the “Build Model of Battery
Module with Thermal Effects” on page 4-170 example.

Open the pack subsystem.

 % Show battery Pack
open_system('batt_BatteryManagementSystem/Pack','force')

Mode Control Dashboard

In an electric vehicle, you can control the charging and discharging operations of the battery.

• To start the car, the key is turned which connects the battery circuit breakers and connects the
battery to the system of the car.

• While driving, the battery is in discharge mode.
• When you connect the car to a charger, the battery is in charging mode.

In a car, the discharging and charging modes are mutually exclusive. This example emulates this
scenario by implementing a charging control dashboard in the model, called Battery Command. This
dashboard comprises a rotary switch for manual operations, an on-off switch for automatic
operations, and indication lamps.

4 Examples

4-78

Use the rotary switch to choose between the charging and discharging modes manually. The position
of the rotary switch affects the battery mode:

• Off — The battery is disconnected.
• Bat — The battery is connected.
• Chg — The battery is charging.
• Dchg — The battery is discharging.

Use the on-off switch to switch between modes automatically by setting the switch to On and by
specifying the BatCmd variable. When the BatCmd variable is equal to:

• 0 — The battery is disconnected.
• 1 — The battery is connected.
• 2 — The battery is charging.
• 3 — The battery is discharging.

The indication lamps show which mode the battery is currently operating in. When the lamps are red,
the specific mode is off. When the lamps are green, the specific mode is on. The model also contains
indication lamps that track fault appearances and a Reset button to reset all the faults to zero for
testing purposes. A red lamp indicates the presence of a fault.

Battery Management System

The battery management system (BMS) manages all the battery operations and keeps it within
operational limits. The BMS maintains the current, voltage, and temperature of the pack within safe
limits during the charging and discharging operations. In this example, the BMS controls the circuit
breakers to protect the battery pack based on the pack sensor data and on estimated parameters
such as the state-of charge (SOC) and the discharge and charge current limits. For temperature
control, the BMS controls the flow of coolant by using an "On-Off" flow control block.

To open the BMS subsystem, at the MATLAB Command Window, enter:

 % Show battery BMS
open_system('batt_BatteryManagementSystem/BMS','force')

 Protect Battery During Charge and Discharge for Electric Vehicle

4-79

The BMS in this example comprises four different components: SoC estimation, MinMax Current
Limiter, Thermal Management, and Battery Protection Logic.

SoC Estimation

A battery SOC provides the remaining charge left inside the battery. This value is an estimation based
on many different parameters. There are different ways to estimate the SOC of a battery. This
example uses an extended Kalman filter estimation strategy.

To open the SoC Estimation subsystem, at the MATLAB Command Window, enter:

% Show SoC estimator
open_system('batt_BatteryManagementSystem/BMS/SoC Estimation','force')

Current Limiter

The current state of the battery, such as the battery voltage and temperature, defines the over-
discharge and over-charge current limits of the battery for protection of the pack. For example, while

4 Examples

4-80

discharging, if the temperature is high, you must reduce the current that the electric vehicle
withdraws from the battery. If the voltage of the battery is low and the vehicle withdraws too much
current from the battery, it can cause damage to the cells and must be limited.

To open the Current Limiter subsystem, at the MATLAB Command Window, enter:

% Show Current limit calculation
open_system('batt_BatteryManagementSystem/BMS/MinMax Current Limiter','force')

Thermal Control

For a safe operation of the battery, the battery temperature must be within specified limits. To control
the temperature, you must remove the excess heat by using a coolant circuit. The flow of the coolant
controls how much heat you can remove from the battery pack. In this example, an on-off control
block manages the coolant circuit.

If the temperature is greater than a threshold value, the pump switches on. When the temperature is
lower than the lowest threshold value, the pump switches off.

To open the Thermal Management subsystem, at the MATLAB Command Window, enter:

% Show Thermal management control
open_system('batt_BatteryManagementSystem/BMS/Thermal Management','force')

 Protect Battery During Charge and Discharge for Electric Vehicle

4-81

Battery Protection Logic

The battery protection logic is a state-flow logic that takes the battery parameters, sensor data, and
user input from the charging control dashboard to generate the signal for the relay operation, state of
the battery, and fault analysis of the battery.

To open the Battery Protection Logic subsystem, at the MATLAB Command Window, enter:

% Show protection stateflow
open_system('batt_BatteryManagementSystem/BMS/Battery Protection Logic/State Flow' ...
 ,'force')

4 Examples

4-82

For fault protection, a counter records the triggering of current and voltage faults. When there are
more than five faults, the battery protection logic disconnects the battery from the load until you
reset the count. The counter does not record thermal faults. The battery is disconnected at the first
thermal fault appearance. While discharging, if the battery SOC is lower than a specific limit, the
protection logic disconnects the battery. While charging, if the battery SoC is greater than the upper
threshold, the protection logic disconnects the battery from the charging circuit.

This flowchart shows the logic inside Fault Protection stateflow block. The logic follows these steps:

• Battery Request — Put the battery in ideal, charge, or discharge mode according to the received
input.

• Protection — Check if the battery parameter (Current, Voltage and Temperature) crosses the
threshold and generate faults.

• Relay Operation — Operate the battery, charge, and discharge relays based on the request and
fault status.

 Protect Battery During Charge and Discharge for Electric Vehicle

4-83

Fault Simulations

Battery faults occur when the battery is put in extreme scenarios.

Open the model batt_BatteryManagementSystem.slx

4 Examples

4-84

open_system('batt_BatteryManagementSystem/','force')

Fault During Battery Charging

In charge mode, a battery can experience these faults:

• Overvoltage fault — An incompatible device charges the battery beyond its rated voltage.
• Overcurrent fault — A current higher than the allowed limit charges the battery.

While charging, as the voltage and temperature of the battery increase, the charging current limit
decreases. If the current limit goes below the charging current, a charging fault triggers and the
charging circuit is disconnected from the battery for protection. After five fault occurrences, the
battery circuit breakers disconnect for the rest of the simulation.

batt_BatteryManagementSystem_param; % Load Simulation parameters
ChargerCC_A = 125; % charger max charging current (Ah)
initialPackSOC = 0.5; % Initial SoC of the pack set to low
BatCmdData=timeseries([0;0;1;1;2;2],[0;1.99;2;2.99;3;130],'Name','BatCmdData'); % Battery input for vehicle in charge at three sec
batt_packBTMSExampleLib_param; % Load battery parameters with the new data
sim('batt_BatteryManagementSystem.slx'); % Simulate the model
%% Plot for comparison
% Plot for current
figure
plot(logsout_batt_BatteryManagementSystem.get("CurDisp").Values,'r-');
hold on
plot(logsout_batt_BatteryManagementSystem.get("<CurChgLmt>").Values ,'b-');
plot(logsout_batt_BatteryManagementSystem.get("<CurDchgLmt>").Values ,'g-');
hold off;legend('Battery pack current','Chg Cur Lmt','Dchg Cur Lmt');
xlabel('Time (s)');ylabel('Current [A]');title('Battery Pack Current');

 Protect Battery During Charge and Discharge for Electric Vehicle

4-85

%% Plot Voltage
figure
simlog_handles(2) = subplot(3, 1, 2);
plot(logsout_batt_BatteryManagementSystem.get("<BatVolt>").Values,'b-');
legend('Battery pack voltage');
xlabel('Time (s)');ylabel('Volt [V]');title('Battery Voltage');

4 Examples

4-86

For higher values of SOC, the cell voltage is closer to the full charge voltage. A high charging current
can overcharge the battery or increase the battery voltage too much, which triggers an overvoltage
fault. After five fault occurrences, the battery circuit breakers disconnects for rest of the simulation.

batt_BatteryManagementSystem_param; % Load Simulation parameters
MaxVoltLmt = 4.2; % cell max voltage limit
ChargerCC_A = 70; % charger max charging current
initialPackSOC = 0.95; % Initial SoC of the pack set to high
BatCmdData=timeseries([0;0;1;1;2;2],[0;1.99;2;2.99;3;130],'Name','BatCmdData'); % Battery input for vehicle in charge at three sec
batt_packBTMSExampleLib_param; % Load battery parameters with the new data
sim('batt_BatteryManagementSystem.slx'); % Simulate model
%% Plot for comparison
% Plot for current
figure
plot(logsout_batt_BatteryManagementSystem.get("CurDisp").Values,'r-');
hold on
plot(logsout_batt_BatteryManagementSystem.get("<CurChgLmt>").Values ,'b-');
plot(logsout_batt_BatteryManagementSystem.get("<CurDchgLmt>").Values ,'g-');
hold off;legend('Battery pack current','Chg Cur Lmt','Dchg Cur Lmt');
xlabel('Time (s)');ylabel('Current [A]');title('Battery Pack Current');

 Protect Battery During Charge and Discharge for Electric Vehicle

4-87

%% Plot Voltage
figure
simlog_handles(2) = subplot(3, 1, 2);
plot(logsout_batt_BatteryManagementSystem.get("<BatVolt>").Values,'b-');
legend('Battery pack voltage');
xlabel('Time (s)');ylabel('Volt [V]');title('Battery Voltage');

4 Examples

4-88

Fault During Battery Discharging

In discharge mode, a battery can experience these faults:

• Undervoltage fault — The battery discharges beyond its minimum rated voltage.
• Overcurrent fault — A current higher than the allowed limit discharges the battery.

While discharging, as the battery voltage decreases and the battery temperature increases, the
discharging current limit decreases. If the current limit goes below the discharging current, a
discharging fault triggers. If the cell voltage goes below the minimum voltage limit, a voltage fault
triggers. For any of these faults the discharging circuit is disconnected from the battery for
protection. After five fault occurrences, the battery circuit breakers disconnect for the rest of the
simulation.

batt_BatteryManagementSystem_param; % Load Simulation parameters
load('batt_BatteryManagementSystem_Drive.mat') % load drive data
MinVoltLmt=3.2; % battery minimum voltage limit
initialPackSOC = 0.25; % Initial SoC of the pack set to low
BatCmdData=timeseries([0;0;1;1;3;3],[0;1.99;2;2.99;3;130],'Name','BatCmdData'); % Battery input for vehicle in discharge at three sec
batt_packBTMSExampleLib_param; % Load battery parameters with the new data
sim('batt_BatteryManagementSystem.slx'); % Simulate model
%% Plot for comparison
% Plot for current
figure
plot(logsout_batt_BatteryManagementSystem.get("CurDisp").Values,'r-');
hold on
plot(logsout_batt_BatteryManagementSystem.get("<CurChgLmt>").Values ,'b-');

 Protect Battery During Charge and Discharge for Electric Vehicle

4-89

plot(logsout_batt_BatteryManagementSystem.get("<CurDchgLmt>").Values ,'g-');
hold off;legend('Battery pack current','Chg Cur Lmt','Dchg Cur Lmt');
xlabel('Time (s)');ylabel('Current [A]');title('Battery Pack Current');

%% Plot Voltage
figure
simlog_handles(2) = subplot(3, 1, 2);
plot(logsout_batt_BatteryManagementSystem.get("<BatVolt>").Values,'b-');
legend('Battery pack voltage');
xlabel('Time (s)');ylabel('Volt [V]');title('Battery Voltage');

4 Examples

4-90

Battery Thermal Fault

Thermal faults trigger if the battery temperature goes beyond the safe operating range. A simple on-
off strategy controls the flow of coolant in the thermal circuit to manage the battery temperature.

To simulate a thermal fault, this example first turns off the coolant control so that the temperature in
the battery is unregulated. The initial temperature of the battery is high. A high current charges the
battery and brings its temperature to values beyond the safe operating range. This triggers the
thermal fault and the battery circuit breakers disconnect for the rest of the simulation.

batt_BatteryManagementSystem_param; % Load Simulation parameters
% Temperature parameter to "switch on" flow for thermal control
CoolantSwitchOnTp = MaxThLmt+5; % switch on temp set to 338.15 K (65 deg C)
% "Switch on" temperature for coolant flow set five degrees more than the max allowed temperature for battery
initialBattTemp=328.15; % Initial temperature set to high(K) - 55 deg Celcius
ChargerCC_A = 75; % charger max charging current
initialPackSOC = 0.5; % Initial SoC of the pack set to low
BatCmdData=timeseries([0;0;1;1;2;2],[0;1.99;2;2.99;3;130],'Name','BatCmdData'); % Battery input for vehicle in charge at three sec
batt_packBTMSExampleLib_param; % Load battery parameters with the new data
sim('batt_BatteryManagementSystem.slx'); % Simulate the model
%% Plot for comparison
% Plot for current
figure
plot(logsout_batt_BatteryManagementSystem.get("CurDisp").Values,'r-');
hold on
plot(logsout_batt_BatteryManagementSystem.get("<CurChgLmt>").Values ,'b-');
plot(logsout_batt_BatteryManagementSystem.get("<CurDchgLmt>").Values ,'g-');

 Protect Battery During Charge and Discharge for Electric Vehicle

4-91

hold off;legend('Battery pack current','Chg Cur Lmt','Dchg Cur Lmt');
xlabel('Time (s)');ylabel('Current [A]');title('Battery Pack Current');

%% Plot Voltage
figure
simlog_handles(2) = subplot(3, 1, 2);
plot(logsout_batt_BatteryManagementSystem.get("<BatVolt>").Values,'b-');
legend('Battery pack voltage');
xlabel('Time (s)');ylabel('Volt [V]');title('Battery Voltage');

4 Examples

4-92

%% Plot for Temp
figure
plot(logsout_batt_BatteryManagementSystem.get("<TpMax>").Values,'r-')
legend('Battery pack Temp');xlabel('Time (s)');ylabel('Temp [K]');
title('Battery Temperature')

 Protect Battery During Charge and Discharge for Electric Vehicle

4-93

Results from Real-Time Simulation

This example has been tested on a Speedgoat Performance real-time target machine with an Intel(R)
3.5 GHz i7 multi-core CPU. This model can run in real time with a step size of 100 milliseconds.

See Also
Battery Builder

Related Examples
• “Build Model of Battery Module with Thermal Effects” on page 4-170

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-94

Peak Shaving with Battery Energy Storage System

This example shows how to model a battery energy storage system (BESS) controller and a battery
management system (BMS) with all the necessary functions for the peak shaving. The peak shaving
and BESS operation follow the IEEE Std 1547-2018 and IEEE 2030.2.1-2019 standards.

Introduction

In this example, an average converter, an output filter, and associated control model the BESS. The
BESS can operate in grid-forming control and it receives setpoint from the operator control room for
power dispatch. The BESS also receives the power flow measurements from point of common
coupling (PCC) and changes control mode for peak shaving.

Description of BESS Controller

The BESS controller receives commands and setpoint from the control room operator as well as
various measurements and status from different sources and loads connected to the feeder. The BESS
in this model comprises these functions:

1 Reference frequency generation
2 Reference voltage generation
3 Receive setpoint and command from operator
4 Change control mode. According to the power flow measurement at PCC, the BESS starts peak

shaving or enables to charging mode

Implementation of Photovoltaic (PV) Model

The model represents a three-phase grid-connected photovoltaic (PV) system that injects power with
unity power factor (UPF) without using an intermediate DC-DC converter. The transformer-less
configuration simulates leakage currents. To track the maximum power point (MPP), the example
uses these maximum power point tracking (MPPT) techniques:

• Incremental conductance
• Perturbation and observation

Build Model for BESS Peak Shaving

Model Overview

Open the model sscv_peak_shaving.slx.

mdl = "sscv_peak_shaving";
open_system(mdl)

The Substation subsystem connects the BESS and the feeder to the main grid. This subsystem
comprises a connecting breaker, disconnectors, and transformers to connect the main grid to the
BESS and the outgoing feeder. The substation also contains the BESS controller and the BMS.

 Peak Shaving with Battery Energy Storage System

4-95

Building Components for Peak Shaving with BESS

This example comprises these main components:

1 Substation
2 BESS System
3 Battery Management System (BMS)
4 Battery Module
5 Operator Control Room

Substation

The Substation subsystem connects the BESS and the feeder to the main grid by using a connecting
breaker, disconnectors, and transformers. The substation also contains the BESS controller and the
BMS.

4 Examples

4-96

BESS System

The BESS system comprises:

1 Grid side converter, filter, measurement, and control
2 Battery management system (BMS)
3 Battery module

The BESS converter connects the battery modules to the grid and controls the power flow through
the converter. The BESS controller implements the peak shaving function.

 Peak Shaving with Battery Energy Storage System

4-97

The power measurement at PCC detects high loading of the main grid at the substation and activates
the peak shaving function. The peak shaving function limits the power from the main grid to the
maximum rated power while the BESS system provides the rest of the power requirement.

Battery Management System (BMS)

The BMS receives the request from the grid-side converter on power requirement. The BMS also
monitors the state-of-charge (SOC) of the battery module. In this example, the BMS disconnects the
battery if the SOC is above the high SOC threshold and the battery is discharging. Similarly the BMS
disconnects the battery if the SOC is below the low SOC threshold and the battery is charging. Once
the battery opens from the DC side, the AC-side breaker also opens within one cycle.

4 Examples

4-98

Battery Module

The battery module is connected to the DC side of the BESS converter. Two battery packs are
connected in series and grounded at the midpoint. The DC breakers can disconnect the battery
module.

 Peak Shaving with Battery Energy Storage System

4-99

Operator Control Room

The Operator Control Room subsystem sends all the setpoints and commands. It also plots the
measured quantities and the system performance analysis.

Define Parameters & Run Simulations

Initialize the BESS, grid, and PV parameters. At the MATLAB Command Window, enter:

run("sscv_peak_shaving_BESS_data.mlx");

Initialize Battery Parameters

The battery module in this example is generated by using the objects and functions in the Battery
Pack Model Builder. For more information on how to build a battery pack, see the “Build Simple
Model of Battery Pack in MATLAB and Simscape” on page 4-211 example.

run("sscv_peak_shaving_param.m");
Ns=1500/25;
Np=round(150*1000/(59*Ns*25));
load('sscv_peak_shaving_data.mat')

Run Simulation

Simulate the model.

run("sscv_peak_shaving");

Plot Simulation Results

These plots show:

1 Voltage and current of BESS.
2 Active and reactive power output of BESS, PV, load, and main grid.
3 Voltage, current, and power consumption of loads.
4 Status, discharge, charge, and SOC of BESS.

4 Examples

4-100

This plot shows the three-phase voltage and current output of the BESS, as well as the grid current
during peak shaving and BESS disconnection.

run('sscv_peak_shaving_plot_BESS_VI.m')

The plot shows the measured values around the start of peak shaving around 3.0 s and the BESS
disconnection at 4.97 s. A stable voltage and current output from BESS verifies a good peak shaving.
The disconnection of BESS happens due to low SOC.

This plot shows the active and reactive power of BESS, PV, main grid, and loads.

run('sscv_peak_shaving_plot_PQ.m')

The stable active and reactive power output verifies the efficacy of the peak shaving method.

This plot shows the voltage and current at the loads.

run('sscv_peak_shaving_plot_Load_VI.m')

The load voltage and load current remain steady during peak shaving and BESS disconnection.

This plot shows the charge, discharge, BESS status, and SOC of the BESS.

run('sscv_peak_shaving_plot_BMS_SoC.m')

The discharge status during peak shaving and the disconnection of the BESS due to low SOC matches
with

the results from the AC-side output. This also validates the BMS functions for BESS SOC monitoring.

Evaluate System Performance

These plots show the results of the system performance and the impact of the peak shaving function.

These performance indices include:

1 Active Power Delivery and BESS Sizing.
2 IEEE 1547 -2018: Category II - Inverters Sourced with Energy Storage Mapping.
3 IEEE 2030.2.1-2019 Guide for Design, Operation, and Maintenance of Battery Energy Mapping.
4 Impact of peak shaving function time delay

This plot shows the loss in active power delivery with variation in BESS sizes. The grid capacity and

load variation are constant.

 Peak Shaving with Battery Energy Storage System

4-101

This plot shows the indices for the BESS system implemented in this model following the IEEE 1547
-2018: Category II - Inverters Sourced with Energy Storage standard.

This plot shows the indices for the BESS system operation and maintenance implemented in this
model following the IEEE 2030.2.1-2019 Guide for Design, Operation, and Maintenance of Battery.

4 Examples

4-102

This plot shows the impact of peak shaving function time delay after grid power crosses the
threshold.

The time delay of the peak shaving function has more impact on the overshoots of the active power
from the grid and the BESS.

 Peak Shaving with Battery Energy Storage System

4-103

There are no significant impact on the load voltage and total harmonic distortion (THD) values.

See Also
Battery Builder | Pack

Related Examples
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-104

Thermal Analysis for New and Aged Battery Packs

This example shows how to evaluate a new and end-of-life (EOL) lithium-ion battery pack. With cell
usage and time, the capacity of the cell degrades and the resistance increases due to the formation of
a solid-electrolyte-interface (SEI), a passivation layer over the anode surface. You must design battery
pack components to meet warranty criteria at EOL time from power, performance, and packaging
perspectives. This example analyzes a 400V battery pack for EOL thermal performance based on its
packaging.

Build Battery Pack

To build the battery pack used in this example, follow the steps in the “Build Model of Battery Pack
with Cell Aging” on page 4-179 example and generate the batt_PackCellAgingModelLib SLX file
in your working directory. This SLX file contains the battery pack model for cell aging applications.
This battery pack comprises five module assemblies. Each module assembly comprises five modules.
Each battery module has 12 cells. The EOL for the battery pack is equal to 1000 cycles.

A Pipe block cools the battery pack modules and the Battery Coolant Control block controls the
coolant flowrate. To analyze the worst case scenario, the circuit receives a constant 2C-rate current
of 54 A for 30 minutes.

Define Parameters and Run Simulations

Initialize the battery parameters. At the MATLAB Command Window, enter:

run("batt_PackCellAgingModel_param.m");

Simulate a new battery pack, for a constant discharging current at 2C rate.

batt_PackCellAgingModelData = sim("batt_PackCellAgingModelSim.slx");
% Post-process data

 Thermal Analysis for New and Aged Battery Packs

4-105

newPack_Temp = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(3).Values.Data;
newPack_Time = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(3).Values.Time;
newPack_Volt = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(2).Values.Data;
newPack_Curr = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(1).Values.Data;
newPack_Flow = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(4).Values.Data;

Simulate an EOL battery pack. Every 100 cycles, the Terminal Resistance, R0 parameter of the cell
decreases by 5%. In each module, set the Change in terminal resistance after N discharge
cycles (%) parameter to 5 and the Number of discharge cycles, N parameter to 100.

ModuleType1.N0Cell = 100;
ParallelAssemblyType1.N0Cell = 100;
ModuleType1.dR0Cell = 5;
ParallelAssemblyType1.dR0Cell = 5;

The thermal resistance of the battery pack, between the cells and the cooling system, degrades with
time. The value of the thermal resistance increases from 1.2 for the new pack to 5 for the aged pack.

ModuleType1.CoolantThermalPathResistance = 5;
ParallelAssemblyType1.CoolantThermalPathResistance = 5;

Initialize the battery pack close to the EOL cycle (999).

end_of_life_cycles = 999;
run("batt_PackCellAgingModel_param_EOL.m")

Simulate the EOL battery pack for a constant discharging current at 2C rate.

batt_PackCellAgingModelData = sim("batt_PackCellAgingModelSim.slx");
% Post-process data
agedPack_Temp = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(3).Values.Data;
agedPack_Time = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(3).Values.Time;
agedPack_Volt = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(2).Values.Data;
agedPack_Curr = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(1).Values.Data;
agedPack_Flow = batt_PackCellAgingModelData.batt_PackCellAgingResults.get(4).Values.Data;

Analyze Results

Load the batt_PackWithCellBalancingResults MAT file and run the
batt_PackWithCellBalancingPlot M file. At the MATLAB Command Window, enter:

max_temp_diff = round(max(squeeze(agedPack_Temp))-max(squeeze(newPack_Temp)),1);
disp(['Battery EOL max. cell temperature is ~ ',num2str(max_temp_diff),...
 ' higher compared to max. cell temperature in a new pack'])

Battery EOL max. cell temperature is ~ 5.4 higher compared to max. cell temperature in a new pack

figure(1)
plot(agedPack_Time,squeeze(agedPack_Volt));hold on;
plot(newPack_Time,squeeze(newPack_Volt));hold off;
legend('aged','new','Location','northeast')
ylabel('Voltage (V)')
xlabel('Time (s)')

4 Examples

4-106

For the aged cells, the maximum cell temperature is almost 7 degree Celsius higher than the
maximum cell temperature of a new pack. The voltage of the aged pack is slightly lower than the
voltage of the new pack. These values show that the battery pack design is thermally safe from EOL
perspective.

figure(2)
plot(agedPack_Time,squeeze(agedPack_Flow));hold on;
plot(newPack_Time,squeeze(newPack_Flow));hold off;
legend('aged','new','Location','northwest')
ylabel('Flow Rate (kg/s)')
xlabel('Time (s)')
ylim([0 0.07])

 Thermal Analysis for New and Aged Battery Packs

4-107

This plot shows the coolant flow switch-on times for a new and an aged battery pack. Inside the aged
battery pack, as the cells heat up more than in a new battery pack, the battery controller switches on
the coolant pump earlier. The pump power consumption is higher due to the earlier activation of the
coolant pump.

Results from Real-Time Simulation

This example has been tested on a Speedgoat Performance real-time target machine with an Intel(R)
3.5 GHz i7 multi-core CPU. This model can run in real time with a step size of 40 milliseconds.

See Also
Battery Builder | Pack

Related Examples
• “Build Model of Battery Pack with Cell Aging” on page 4-179

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-108

Size Resistor for Battery Passive Cell Balancing

This example shows how to implement a passive cell balancing for a lithium-ion battery pack. Cell-to-
cell differences in the battery module create imbalances in the cell state-of-charge (SOC) and
voltages. In this example, the balancing algorithm triggers when the battery pack is idle and the
difference in the cell SOC is greater than a certain predefined value. The passive balancing shunt
resistor is sized based on power loss and balancing time considerations.

Build Battery Pack

To build the battery pack used in this example, follow the steps in the “Build Model of Battery Pack
with Cell Balancing Circuit” on page 4-187 example and generate the
batt_PackWithCellBalancingLib SLX files in your working directory. This SLX file contains the
battery pack model for cell balancing applications. This battery pack comprises two module
assemblies. Each module assembly comprises two modules. Each battery module has 16 cells. Open
the batt_PackWithCellBalancingLib SLX file, drag and drop the Pack subsystem to your model,
and connect it to the Passive Cell Balancing block. The Passive Cell Balancing block uses the cell SOC
as balancing parameter.

Define Parameters

Initialize the battery parameters

run("batt_PackWithCellBalancing_param.m");

In this example, the balancing threshold is equal to 0.1% of the SOC.

threshold_balancing_SOC = 1e-3;

For both the modules inside ModuleAssembly1 object, define all the 16 initial cell SOC.

ModuleAssembly1.Module1.socCell =...
 [0.69;0.69;0.69;0.69;...
 0.715;0.715;0.715;0.715;...
 0.7;0.7;0.7;0.7;...
 0.7;0.7;0.7;0.7];

 Size Resistor for Battery Passive Cell Balancing

4-109

ModuleAssembly1.Module2.socCell =...
 ModuleAssembly1.Module1.socCell;

Do the same for both modules inside the ModuleAssembly2 object.

ModuleAssembly2.Module1.socCell =...
 [0.69;0.69;0.69;0.69;...
 0.715;0.715;0.715;0.715;...
 0.7;0.7;0.7;0.7;...
 0.7;0.7;0.7;0.7];
ModuleAssembly2.Module2.socCell =...
 ModuleAssembly2.Module1.socCell;

Specify the shunt resistor options that you want to evaluate.

balancingResistor_options = [2 3 4 5 6]; % all Resistances in Ohm

Run Simulations

Simulate the model for all the balancing resistor options specified in the
balancingResistor_options variable. At the MATLAB Command Window, run the
batt_PackWithCellBalancingSimulate M file. The file runs simulation for all the balancing
resistor options and stores the output result in a batt_PackWithCellBalancingResults MAT file.

Analyze Results

Load the batt_PackWithCellBalancingResults MAT file, in the MATLAB Command Window,
enter:

run("batt_PackWithCellBalancingPlot.m")

4 Examples

4-110

 Size Resistor for Battery Passive Cell Balancing

4-111

The first plot shows the balancing time, in hours, for each resistor rating. For a pack resistor of 4
Ohm, the battery SOC balances in around 2.5 hours.

The second plot shows the power loss, in Watts, for each resistor rating. A resistor of 4 Ohm produces
a power loss equal to almost 25 W.

The 4 Ohm resistor is a good trade-off for the final hardware.

See Also
Battery Builder | Pack

Related Examples
• “Build Model of Battery Pack with Cell Balancing Circuit” on page 4-187

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-112

Battery Monitoring

This example shows how to use battery management system blocks to monitor the current and
temperature of a battery. A random current and temperature profile is applied to the battery which is
then simulated for 6 hours.

Model

Current Monitoring Results

The plot below shows the battery current and overcurrent error.

 Battery Monitoring

4-113

Temperature Monitoring Results

The plot below shows the battery temperature and temperature out-of-range errors.

4 Examples

4-114

Results from Real-Time Simulation

This example has been tested on a Speedgoat Performance real-time target machine with an Intel®
3.5 GHz i7 multi-core CPU. This model can run in real time with a step size of 50 microseconds.

See Also
Battery Current Monitoring | Battery Temperature Monitoring

 Battery Monitoring

4-115

Battery Charging and Discharging

This example shows how to use a constant current and constant voltage algorithm to charge and
discharge a battery. The Battery CC-CV block is charging and discharging the battery for 10 hours.
The initial state-of-charge is equal to 0.3. When the battery is charging, the current is constant until
the battery reaches the maximum voltage and the current decreases towards 0. When the battery is
discharging, a constant current is used.

Model

Simulation Results

The plot below shows the current, voltage, and temperature of the battery under test.

4 Examples

4-116

Results from Real-Time Simulation

This example has been tested on a Speedgoat Performance real-time target machine with an Intel®
3.5 GHz i7 multi-core CPU. This model can run in real time with a step size of 50 microseconds.

See Also
Battery CC-CV

 Battery Charging and Discharging

4-117

Battery State-of-Health Estimation

This example shows how to estimate the battery internal resistance and state-of-health (SOH) by
using an adaptive Kalman filter. The initial state-of-charge (SOC) of the battery is equal to 0.6. The
estimator uses an initial condition for the SOC equal to 0.65. The battery keeps charging and
discharging for 10 hours. The unscented Kalman filter estimator converges to the real value of the
SOC while also estimating the internal resistance. To use a different Kalman filter implementation, in
the SOC Estimator (Kalman Filter) block, set the Filter type parameter to the desired value.

Model

Simulation Results

The plot below shows the real and estimated battery state-of-charge, estimated terminal resistance,
and estimated state-of-health of the battery.

4 Examples

4-118

Results from Real-Time Simulation

This example has been tested on a Speedgoat Performance real-time target machine with an Intel®
3.5 GHz i7 multi-core CPU. This model can run in real time with a step size of 100 microseconds.

See Also
SOC Estimator (Adaptive Kalman Filter) | SOH Estimator

 Battery State-of-Health Estimation

4-119

Battery State-of-Charge Estimation

This example shows how to estimate the battery state-of-charge (SOC) by using a Kalman filter. The
initial SOC of the battery is equal to 0.5. The estimator uses an initial condition for the SOC equal to
0.8. The battery keeps charging and discharging for 6 hours. The extended Kalman filter estimator
converges to the real value of the SOC in less than 10 minutes and then follows the real SOC value.
To use a different Kalman filter implementation, in the SOC Estimator (Kalman Filter) block, set the
Filter type parameter to the desired value.

Model

Simulation Results

The plot below shows the real and estimated battery state-of-charge.

4 Examples

4-120

Results from Real-Time Simulation

This example has been tested on a Speedgoat Performance real-time target machine with an Intel®
3.5 GHz i7 multi-core CPU. This model can run in real time with a step size of 50 microseconds.

See Also
SOC Estimator (Kalman Filter)

 Battery State-of-Charge Estimation

4-121

Battery Passive Cell Balancing

This example shows how to balance a battery with two cells connected in series by using a passive
cell balancing algorithm. The initial state-of-charge (SOC) for the two cells are equal to 0.7 and 0.75.
The balancing procedure depends on the cell voltages. Alternatively, you can use the SOC values for
balancing. When the balancing is active, a bleeding resistor switches on to bleed the cells with higher
charge. You can use the objects and functions in the Battery Pack Model Builder to generate more
complex battery packs.

Model

Simulation Results

The plot below shows the cell state-of-charge values.

4 Examples

4-122

Results from Real-Time Simulation

This example has been tested on a Speedgoat Performance real-time target machine with an Intel®
3.5 GHz i7 multi-core CPU. This model can run in real time with a step size of 70 microseconds.

See Also
Battery CC-CV | Passive Cell Balancing

 Battery Passive Cell Balancing

4-123

Build Detailed Model of Battery Pack From Cylindrical Cells

This example shows how to create and build Simscape™ system models for various battery designs
and configurations based on cylindrical battery cells in Simscape™ Battery™. The buildBattery
function allows you to automatically generate Simscape models for these Simscape Battery objects:

• ParallelAssembly
• Module
• ModuleAssembly
• Pack

This function creates a library in your working folder that contains a system model block of a battery
pack. Use this system model as a reference in your simulations. The run-time parameters for these
models, such as the battery cell impedance or the battery open-circuit voltage, are defined after the
model creation and are therefore not covered by the Battery Pack Builder classes. To define the run-
time parameters, you can either specify them in the block mask of the generated Simscape models or
use the MaskParameters argument of the buildBattery function.

During the first half of this example, you first define the key properties of a cylindrical battery cell
and block model. You then use this cylindrical battery cell as a fundamental repeating unit inside a
parallel assembly component. In the industry, this component is also called a "sub-module", a "super-
cell", a "P-set", or just a "cell". You later employ this parallel assembly to define a battery module,
which is then used to create a module assembly and finally a battery pack. These larger battery
systems all use the battery cell as a fundamental repeating unit. Throughout the workflow, you
visualize the geometry and the relative positioning of these battery systems by using the
BatteryChart object.

In the second half of the example, you modify the modeling methodology and the model resolution of
the Module, ModuleAssemblies, and Pack objects before generating the final Simscape battery
model. You can perform the geometrical aggregation or stacking of any battery object along the
sequence either along the X or Y axis. These axis mirror the “Coordinate Systems in Vehicle Dynamics
Blockset” (Vehicle Dynamics Blockset).

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

Create and Visualize Battery Objects in MATLAB

To create a battery pack, you must first design and create the foundational elements of the battery
pack.

This figure shows the overall process to create a battery pack object in a bottom-up approach:

4 Examples

4-124

A battery pack comprises multiple module assemblies. These module assemblies, in turn, comprise a
number of battery modules connected electrically in series or in parallel. The battery modules are
made of multiple parallel assemblies which, in turn, comprise a number of battery cells connected
electrically in parallel under a specific topological configuration or geometrical arrangement.

Create and Visualize Battery Cell Object

A battery cell is an electrochemical energy storage device that provides electrical energy from stored
chemical energy. An electrochemical battery cell is the fundamental building block in the
manufacturing of larger battery systems. To obtain the required energy and voltage levels, multiple
battery cells are typically connected electrically in parallel and/or in series.

To mirror the real-world behavior, the Simscape Battery™ Cell object is the foundational element for
the creation of a battery pack system model. You can create all battery classes without any inputs. To
create a battery cell, use the Cell object.

batterycell = Cell();

To meet the battery packaging and space requirements, you can arrange the battery cells in three
main geometrical arrangements: cylindrical, pouch, or prismatic. To be able to visualize a single
battery cell, you must first define its geometry.

Define a cylindrical geometry by using the CylindricalGeometry object.

cellgeometry = CylindricalGeometry();

The CylindricalGeometry object has two properties:

• Radius — Radius of the cylindrical geometry, specified as a simscape.Value object that
represents a scalar with a unit of length.

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-125

• Height — Height of the cylindrical geometry, specified as a simscape.Value object that
represents a scalar with a unit of length.

Specify custom values for the Radius and Height properties of the cylindrical geometry.

cellgeometry.Radius = simscape.Value(0.0105, "m");
cellgeometry.Height = simscape.Value(0.07, "m");

For more information on the possible geometrical arrangements of a battery cell, see the
PouchGeometry and PrismaticGeometry documentation pages.

You can now link this geometry object to the battery cell by accessing the Geometry property of the
batterycell object.

batterycell.Geometry = cellgeometry;

Specify a custom value for the mass of the battery cell by using the Mass property.

batterycell.Mass = simscape.Value(0.07,"kg");
disp(batterycell)

 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.CylindricalGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]

Show all properties

Visualize the battery cell by using the BatteryChart object. Create the uifigure where you want to
visualize your battery cell.

f = uifigure("Color", "white");

Then use the BatteryChart object to visualize the battery cell.

cellchart = BatteryChart(Parent = f, Battery = batterycell);
title(cellchart, "Cylindrical Cell")

4 Examples

4-126

For more information, see the BatteryChart documentation page.

By default, the Battery (Table-Based) block is the electrical and thermal model used to represent and
simulate this battery cell in Simscape. When scaled up into larger battery systems like a parallel
assembly or a module, this model is also scaled up accordingly depending on the model resolution. To
display the information about the cell model block, use the CellModelOptions property of the
batterycell object.

disp(batterycell.CellModelOptions.CellModelBlockPath);

batt_lib/Cells/Battery
(Table-Based)

The Cell object also allows you to simulate the thermal effects of the battery cell by using a simple
1-D model. To simulate the thermal effects of the battery cell, in the BlockParameters property of
the CellModelOptions property of the Cell object, set the thermal_port parameter to "model".

batterycell.CellModelOptions.BlockParameters.thermal_port = "model";

You can modify all the conditional parameters of the Battery (Table-Based) block by using the
CellModelOptions property.

disp(batterycell.CellModelOptions.BlockParameters);

 T_dependence: no
 thermal_port: model

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-127

 prm_age_OCV: OCV
 prm_age_capacity: disabled
 prm_age_resistance: disabled
 prm_age_modeling: equation
 prm_dyn: off
 prm_dir: noCurrentDirectionality
 prm_fade: disabled
 prm_leak: disabled

Create and Visualize Battery ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. You can specify the number of cells
connected in parallel by using the NumParallelCells property.

In this example, you create a parallel assembly using 48 of the cylindrical cells created in the
previous step, stacked in a square topology over four rows.

parallelassembly = ParallelAssembly(...
 NumParallelCells = 48, ...
 Cell = batterycell, ...
 Topology = "Square", ...
 Rows = 4, ...
 InterCellGap = simscape.Value(0.001, "m"));

The Topology property is a function of the cell format. For cylindrical cells, the available topologies
are "Hexagonal" and "Square". By default, the ParallelAssembly object stacks the cells along
the Y axis.

Visualize the battery parallel assembly. Create the uifigure where you want to visualize your battery
parallel assembly and use the BatteryChart object.

f = uifigure("Color", "white");
parallelassemblychart = BatteryChart(Parent = f, Battery = parallelassembly);
title(parallelassemblychart, "Parallel Assembly Chart")

4 Examples

4-128

You can modify all the public properties inside the parallel assembly after its creation. For example,
you can set the topology of the parallel assembly to the more space-efficient hexagonal configuration.
Set the Topology property of the ParallelAssembly object to "Hexagonal".

parallelassembly.Topology = "Hexagonal";

Visualize the hexagonal parallel assembly.

f = uifigure("Color", "white");
parallelassemblychart = BatteryChart(Parent = f, Battery = parallelassembly);
title(parallelassemblychart, "Parallel Assembly Chart")

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-129

You can check the cell packaging volume and the mass of any battery by accessing the
PackagingVolume and CumulativeMass properties.

disp(parallelassembly.PackagingVolume)

 0.0015 : m^3

disp(parallelassembly.CumulativeMass)

 3.3600 : kg

Create and Visualize Battery Module Object

A battery module comprises multiple parallel assemblies connected in series. You can specify the
number of parallel assemblies connected in series by using the NumSeriesAssemblies property.
You can stack or geometrically assemble batteries along the X or Y axis of a Cartesian coordinate
system by using the StackingAxis property.

In this example, you create a battery module using four parallel assemblies that you created in the
previous step, stacked along the X axis, with an intergap between each assembly equal to 0.0001
meters.

module = Module(...
 ParallelAssembly = parallelassembly, ...
 NumSeriesAssemblies = 4, ...
 StackingAxis = "X",...
 InterParallelAssemblyGap = simscape.Value(0.0001, "m"));

4 Examples

4-130

Visualize the battery Module object. Create the uifigure where you want to visualize your battery
module and use the BatteryChart object.

f = uifigure("Color", "white");
modulechart = BatteryChart(Parent = f, Battery = module);
title(modulechart, "Module Chart")

Display the total packacing volume and cumulative mass of your battery module.

disp(module.PackagingVolume)

 0.0060 : m^3

disp(module.CumulativeMass)

 13.4400 : kg

You can modify all the public properties inside the module after its creation. For example, modify the
gap between parallel assemblies and check how the packaging volume increases due to this change.
Set the InterParallelAssemblyGap property of the Module object to 0.005 m and visualize the
object.

module.InterParallelAssemblyGap = simscape.Value(0.005, "m");

f = uifigure("Color", "white");
modulechart = BatteryChart(Parent = f, Battery = module);
title(modulechart, "Module Chart")

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-131

Now check the new packaging volume of your battery module.

disp(module.PackagingVolume)

 0.0063 : m^3

The packaging volume increased due to the increase in gap between parallel assemblies.

Reset the InterParallelAssemblyGap property back to its original value.

module.InterParallelAssemblyGap = simscape.Value(0.001,"m");

Create and Visualize Battery ModuleAssembly Object

A battery module assembly comprises multiple battery modules connected in series or in parallel. You
can define the number and types of modules by using the Module property. If a module assembly
comprises many identical modules, use the repmat function. Otherwise use an array of distinct
modules.

In this example, you create a battery module assembly by using two identical modules of the Module
object you created in the previous step, stacked along the Y axis, with an intergap between each
module equal to 0.005 meters. By default, the ModuleAssembly object electrically connects the
modules in series.

moduleassembly = ModuleAssembly(...
 Module = repmat(module,1,2), ...

4 Examples

4-132

 StackingAxis = "Y",...
 InterModuleGap = simscape.Value(0.005, "m"), ...
 CircuitConnection = "Series");

Visualize the battery ModuleAssembly object. Create the uifigure where you want to visualize your
battery module assembly and use the BatteryChart object.

f = uifigure("Color", "white");
moduleassemblychart = BatteryChart(Parent = f, Battery = moduleassembly);
title(moduleassemblychart, "Module Assembly Chart")

All battery objects, including modules, have a Name property. The ModuleAssembly object
automatically assigns a unique name to all of its modules. To display the name of each module in your
ModuleAssembly object, use the Name property.

disp(moduleassembly.Module(1).Name);

Module1

disp(moduleassembly.Module(2).Name);

Module2

You can modify the Name property to rename any of the modules inside a module assembly. Specify a
new name for the two modules in your battery module assembly.

moduleassembly.Module(1).Name = "MyModuleA";
moduleassembly.Module(2).Name = "MyModuleB";
disp(moduleassembly.Module(1).Name);

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-133

MyModuleA

disp(moduleassembly.Module(2).Name);

MyModuleB

A ModuleAssembly battery object also allows you to stack the modules along the Z axis. To stack
modules along the Z axis, use the NumLevels property.The NumLevels property defines the number
of levels, tiers, or floors of the module assembly. The ModuleAssembly object stacks the modules
symmetrically according to the number of levels and modules in the assembly.

For example, create a new module assembly object that comprises 4 identical modules stacked along
the Z axis on two levels.

zStackedModuleAssembly = ModuleAssembly(...
 Module = repmat(module,1,4), ...
 StackingAxis = "Y",...
 NumLevel = 2,...
 InterModuleGap = simscape.Value(0.01, "m"));

Visualize the ModuleAssembly object, zStackedModuleAssembly.

f = uifigure("Color", "white");
moduleassemblychart = BatteryChart(Parent = f, Battery = zStackedModuleAssembly);
title(moduleassemblychart, "Module Assembly Chart")

4 Examples

4-134

Create and Visualize Battery Pack Object

You now have all the foundational elements to create your battery pack. A battery pack comprises
multiple module assemblies connected in series or in parallel. You can define the number and types of
module assemblies by using the ModuleAssembly property. If a pack comprises many identical
module assemblies, use the repmat function. Otherwise use an array of distinct module assemblies.

In this example, you create a battery pack of three module assemblies. The first module assembly is
the module assembly stacked along the Z axis, zStackedModuleAssembly. The other two module
assemblies are two identical module assemblies that you created in the previous step.

batterypack2 = Pack(...
 ModuleAssembly = [zStackedModuleAssembly, repmat(moduleassembly,1,2)], ...
 StackingAxis = "X",...
 InterModuleAssemblyGap = simscape.Value(0.005, "m"));

Visualize the battery Pack object. Create the uifigure where you want to visualize your battery pack
and use the BatteryChart object.

f = uifigure("Color", "white");
packchart = BatteryChart(Parent = f, Battery = batterypack2);
title(packchart, "Pack Chart")

The Pack object automatically assigns a unique name to all of its module assemblies upon creation.
To display the name of each module assembly in your Pack object, use the Name property.

disp(batterypack2.ModuleAssembly(1).Name);

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-135

ModuleAssembly1

disp(batterypack2.ModuleAssembly(2).Name);

ModuleAssembly2

You can use a Pack object to define a common cell balancing strategy for all the modules inside the
pack by specifying the BalancingStrategy property.

batterypack2.BalancingStrategy = "Passive";

Modifying this property at this level automatically modifies the same property inside all of the
underlying module components in the battery pack. Check the balancing strategy of the modules
inside your battery pack.

disp(batterypack2.ModuleAssembly(1).Module(1).BalancingStrategy);

Passive

disp(batterypack2.ModuleAssembly(1).Module(2).BalancingStrategy);

Passive

The BalancingStrategy property of each module in the pack updated to reflect the change you
have applied to the BalancingStrategy property of your Pack object.

Use the PackagingVolume and CumulativeMass properties to display the cumulative pack mass
and packaging volume of your battery pack.

disp(batterypack2.PackagingVolume)

 0.0484 : m^3

disp(batterypack2.CumulativeMass)

 107.5200 : kg

Modify Model Resolution of Battery Objects

ParallelAssembly and Module objects have a ModelResolution property that allows you to set
the level of fidelity of the generated Simscape model used in simulations. You can specify the
ModelResolution property to either:

• Lumped — Lowest fidelity. The battery object uses only one electrical model. To obtain the fastest
compilation time and running time, use this value.

• Detailed — Highest fidelity. The battery object uses one electrical model and one thermal model
for each battery cell.

• Grouped — Custom simulation strategy, available only to Module objects.

You can view the simulation strategy by using the SimulationStrategyVisible property of the
BatteryChart object.

Modify Model Resolution for ParallelAssembly Object

A ParallelAssembly object uses a single battery Cell object as s foundational repeating unit upon
its creation.

4 Examples

4-136

Create a new ParallelAssembly object with the battery cell that you created at the beginning of
this example. By default, the ModelResoultion property of a ParallelAssembly object is set to
"Lumped".

lumpedPSet = ParallelAssembly(...
 NumParallelCells = 48, ...
 Cell = batterycell, ...
 Rows = 4, ...
 InterCellGap = simscape.Value(0.001, "m"));

Visualize the ParallelAssembly object and check the model resolution by setting the
SimulationStrategyVisible property to "on".

f = uifigure("Color", "white");
paralllelAssemblyChartLumped = BatteryChart(Parent = f, Battery = lumpedPSet, SimulationStrategyVisible = "on");

Only one single cell model block represents all the cell components inside the orange box.

If you set the ModelResolution property of the parallel assembly to "Detailed", the
ParallelAssembly object instantiates a number of cell model blocks equal to the value of the
NumParallelCells property and connects them electrically in parallel in Simscape.

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-137

Change the model resolution of the previous ParallelAssembly object to "Detailed" and
visualize it by using the BatteryChart object and by setting the SimulationStrategyVisible
property to "on".

detailedPset = lumpedPSet;
detailedPset.ModelResolution = "Detailed";
f = uifigure("Color", "white");
paralllelAssemblyChartDetailed = BatteryChart(Parent = f, Battery = detailedPset, SimulationStrategyVisible = "on");

4 Examples

4-138

A number of cell model blocks equal to the value of the NumParallelCells property represents
each cell component.

Modify Model Resolution for Module Object

Lumped Module Resolution

By default, the model resolution in modules and parallel assemblies is set to "Lumped". This means
that the generated battery model in Simscape only uses one electrical model to electrically simulate
all the battery cells within that system.

Check how the lumped module resolution works in Module objects. Create a Module object that
comprises four parallel assemblies stacked along the X axis.

lumpedmodule = Module(...
 ParallelAssembly = lumpedPSet, ...
 NumSeriesAssemblies = 4, ...
 StackingAxis = "X",...
 InterParallelAssemblyGap = simscape.Value(0.0001, "m"));

Visualize the Module object and check the model resolution by setting the
SimulationStrategyVisible property to "on".

f = uifigure("Color", "white");
modulechartlumped = BatteryChart(Parent = f, Battery = lumpedmodule, SimulationStrategyVisible = "on");

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-139

One electrical cell model simulates all the cells contained in the dotted orange box.

Add thermal boundary conditions to your module. To define a thermal path to ambient, set the
AmbientThermalPath property to "CellBasedThermalResistance".

modulelumped.AmbientThermalPath = "CellBasedThermalResistance";

Detailed Module Resolution

Now change the model resolution of the previous Module object to "Detailed" and visualize it by
using the BatteryChart object and by setting the SimulationStrategyVisible property to
"on".

detailedmodule = lumpedmodule;
detailedmodule.ParallelAssembly.ModelResolution = "Detailed";
detailedmodule.ModelResolution = "Detailed";

For cylindrical modules, the detailed model resolution is not recommended as many cells are present
and it is important to keep the total number of models between 30 and 50.

f = uifigure("Color", "white");
modulechartdetailed = BatteryChart(Parent = f, Battery = detailedmodule, SimulationStrategyVisible = "on");

4 Examples

4-140

A number of cell model blocks equal to the value of the NumParallelCells property represents
each cell component.

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-141

Add thermal boundary conditions to your detailed battery module. To define the location of a cooling
plate, set the CoolingPlate property to "Bottom".

detailedmodule.CoolingPlate = "Bottom";

Grouped Module Resolution

For battery modules, you can also set the ModelResolution property to "Grouped". This
simulation strategy helps increasing the model performance.

module.ModelResolution = "Grouped";

When you set the ModelResolution property of a module to "Grouped", you can define an
additional simulation strategy by using the SeriesGrouping and ParallelGrouping properties:

• SeriesGrouping — Custom modeling strategy for the module along the series connections,
specified as a strictly positive array of doubles. The length of the array of this property specifies
the number of individual electrical models required. Each element value of this array specifies

4 Examples

4-142

how many parallel assemblies are lumped within the specified electrical model. The sum of the
elements in the array must be equal to value of the NumSeriesAssemblies property. For example,
if your module comprises four parallel assemblies (NumSeriesAssemblies = 4) and you set this
property to [2 1 1], the module is discretized in three individual electrical models where the
first model comprises two of the original parallel assemblies.

module.SeriesGrouping = [1,2,1];
f = uifigure("Color", "white");
modulechartgrouped = BatteryChart(Parent = f, Battery = module, SimulationStrategyVisible = "on");

• ParallelGrouping — Custom modeling strategy for the module for every parallel assembly
defined in the SeriesGrouping property, specified as a strictly positive array of doubles. The length
of the array of this property must be equal to the length of the array of the SeriesGrouping
property. Each element of this array specifies the number of individual electrical models for every
element in the array of the SeriesGrouping property. The values of the elements of this array can
be equal only to either 1 or the value of the NumParallelCells property. For example, if your
module comprises four parallel assemblies (NumSeriesAssemblies = 4), 48 cylindrical cells for
each parallel assembly (NumParallelCells = 48), and three individual electrical models where
the first model comprises two of the original parallel assemblies (SeriesGrouping = [2 1 1]),
then if you set this property to [1 1 48], the module is discretized in 50 individual electrical
models where each cell of the fourth parallel assembly has an electrical model.

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-143

Assign Model Resolution for ModuleAssembly Object

A ModuleAssembly object inherits the model resolution of its battery modules.

Create a ModuleAssembly object by using the lumpedmodule Module object that you created in the
previous step.

moduleassemblylumped = ModuleAssembly(...
 Module = repmat(lumpedmodule,1,2), ...
 StackingAxis = "Y",...
 InterModuleGap = simscape.Value(0.005, "m"));

Then visualize the ModuleAssembly object and check the model resolution by setting the
SimulationStrategyVisible property to "on".

f = uifigure("Color", "white");
lumpedmoduleassemblychart = BatteryChart(Parent = f, Battery = moduleassemblylumped , SimulationStrategyVisible = "on");
title(lumpedmoduleassemblychart, "Module Assembly Lumped Simulation Strategy Chart")

4 Examples

4-144

The ModelResolution property of the ModuleAssembly object you just created is automatically set
to "Lumped" because the ModelResolution properties of its modules are set to "Lumped".

Assign Model Resolution for Pack Object

A Pack object inherits the model resolution of its battery module assemblies.

Create a Pack object by using the moduleassemblylumped ModuleAssembly object that you created
in the previous step.

packlumped = Pack(...
 ModuleAssembly = repmat(moduleassemblylumped,1,4), ...
 StackingAxis = "X",...
 InterModuleAssemblyGap = simscape.Value(0.01, "m"));

Then visualize the Pack object and check the model resolution by setting the
SimulationStrategyVisible property to "on".

f = uifigure("Color", "white");
packlumpedchart = BatteryChart(Parent = f, Battery = packlumped , SimulationStrategyVisible = "on");
title(packlumpedchart, "Pack Lumped Simulation Strategy Chart")

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-145

The ModelResolution property of the Pack object is automatically set to "Lumped" because the
ModelResolution properties of its module assemblies are set to "Lumped".

Build Simscape Model for the Battery Objects

After you have created your battery objects, you need to convert them into Simscape models to use
them in block diagrams. You can then use these models as reference for your system integration and
requirement evaluation, cooling system design, control strategy development, hardware-in-the-loop,
and many more applications.

To create a library that contains the Simscape Battery model of all the batteries object in this
example, use the buildBattery function.

buildBattery(packlumped,"LibraryName","cylindricalPackExample");

This function creates the cylindricalPackExample_lib and cylindricalPackExample SLX
library files in your working directory. The cylindricalPackExample_lib library contains the
modules and parallel assemblies sublibraries.

4 Examples

4-146

To access the Simscape models of your Module and ParallelAssembly objects, open the
cylindricalPackExample_lib. SLX file, double-click the sublibrary, and drag the Simscape blocks
in your model.

The cylindricalPackExample library contains the Simscape models of your ModuleAssembly
and Pack objects.

The Simscape models of your ModuleAssembly and Pack objects are subsystems. You can look
inside these subsystems by opening the packLibrary SLX file and double-click the subsystem.

For more information, see the buildBattery documentation page.

See Also
Battery Builder

Related Examples
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

 Build Detailed Model of Battery Pack From Cylindrical Cells

4-147

Build Detailed Model of Battery Pack From Pouch Cells

This example shows how to create and build Simscape™ system models for various battery designs
and configurations based on pouch battery cells in Simscape™ Battery™. The buildBattery
function allows you to automatically generate Simscape models for these Simscape Battery objects:

• ParallelAssembly
• Module
• ModuleAssembly
• Pack

This function creates a library in your working folder that contains a system model block of a battery
pack. You can use this system model as a reference in your simulations. The run-time parameters for
these models, such as the battery cell impedance or the battery open-circuit voltage, are defined after
the model creation and are therefore not covered by the Battery Pack Builder classes. To define the
run-time parameters, you can either specify them in the block mask of the generated Simscape
models or use the MaskParameters argument of the buildBattery function.

During the first half of this example, you first define the key properties of a pouch battery cell and
block model. You then use this pouch battery cell as a fundamental repeating unit inside a parallel
assembly component. In the industry this component is also called a "sub-module", a "super-cell", a
"P-set", or just a "cell". You later employ this parallel assembly to define a battery module, which is
then used to create a module assembly and finally a battery pack. These larger battery systems all
use the battery cell as a fundamental repeating unit. Throughout the workflow, you visualize the
geometry and the relative positioning of these battery systems by using the BatteryChart object.

In the second half of the example, you modify the modeling methodology and the model resolution of
the Module, ModuleAssemblies, and Pack objects before generating the final Simscape battery
model. You can perform the geometrical aggregation or stacking of any battery object along the
sequence either along the X or Y axis. These axis mirror the “Coordinate Systems in Vehicle Dynamics
Blockset” (Vehicle Dynamics Blockset).

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

Create and Visualize Battery Objects in MATLAB

To create a battery pack, you must first design and create the foundational elements of the battery
pack.

This figure shows the overall process to create a battery pack object in a bottom-up approach:

4 Examples

4-148

A battery pack comprises multiple module assemblies. These module assemblies, in turn, comprise a
number of battery modules connected electrically in series or in parallel. The battery modules are
made of multiple parallel assemblies which, in turn, comprise a number of battery cells connected
electrically in parallel under a specific topological configuration or geometrical arrangement.

Create and Visualize Battery Cell Object

A battery cell is an electrochemical energy storage device that provides electrical energy from stored
chemical energy. An electrochemical battery cell is the fundamental building block in the
manufacturing of larger battery systems. To obtain the required energy and voltage levels, multiple
battery cells are typically connected electrically in parallel and/or in series.

To mirror the real-world behavior, the Simscape Battery Cell object is the foundational element for
the creation of a battery pack system model. You can create all battery classes without any inputs. To
create a battery cell, use the Cell object.

batterycell = Cell();

To meet the battery packaging and space requirements, you can arrange the battery cells in three
main geometrical arrangements: cylindrical, pouch, or prismatic. To visualize a single battery cell,
you must first define its geometry.

Define a pouch geometry by using the PouchGeometry object.

cellgeometry = PouchGeometry();

The PouchGeometry object has six properties:

• Length — Length of the pouch geometry, specified as a simscape.Value object that represents
a scalar with a unit of length.

 Build Detailed Model of Battery Pack From Pouch Cells

4-149

• Thickness — Thickness of the pouch geometry, specified as a simscape.Value object that
represents a scalar with a unit of length.

• Height — Height of the pouch geometry, specified as a simscape.Value object that represents
a scalar with a unit of length.

• TabLocation — Location of the tabs of a pouch battery cell, specified as either Standard or
Opposed.

• TabWidth — Width of the tab of a pouch battery cell, specified as a simscape.Value object that
represents a scalar with a unit of length.

• TabHeight — Height of the tab of a pouch battery cell, specified as a simscape.Value object
that represents a scalar with a unit of length.

Specify custom values for the Length, Height, TabWidth, and TabLocation properties of the
pouch geometry.

cellgeometry.Length = simscape.Value(0.36, "m");
cellgeometry.Height = simscape.Value(0.13, "m");
cellgeometry.TabWidth = simscape.Value(0.05, "m");
cellgeometry.TabLocation = "Opposed";

For more information on the possible geometrical arrangements of a battery cell, see the
CylindricalGeometry and PrismaticGeometry documentation pages.

You can now link this geometry object to the battery cell by accessing the Geometry property of the
batterycell object.

batterycell.Geometry = cellgeometry;

Specify a custom value for the mass of the battery cell by using the Mass property.

batterycell.Mass = simscape.Value(0.8,"kg");
disp(batterycell)

 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.PouchGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]

Show all properties

Visualize the battery cell by using the BatteryChart object. Create the uifigure where you want to
visualize your battery cell.

f = uifigure("Color", "white");

Then use the BatteryChart object to visualize the battery cell.

cellchart = BatteryChart(Parent = f, Battery = batterycell);
title(cellchart, "Pouch Cell")

4 Examples

4-150

By default, the Battery (Table-Based) block is the electrical and thermal model used to represent and
simulate this battery cell in Simscape. When scaled up into larger battery systems like a parallel
assembly or a module, this model is also scaled up accordingly depending on the model resolution. To
display the information about the cell model block, use the CellModelOptions property of the
batterycell object.

disp(batterycell.CellModelOptions.CellModelBlockPath);

batt_lib/Cells/Battery
(Table-Based)

The Cell object also allows you to simulate the thermal effects of the battery cell by using a simple
1-D model. To simulate the thermal effects of the battery cell, in the BlockParameters property of
the CellModelOptions property of the Cell object, set the thermal_port parameter to "model".

batterycell.CellModelOptions.BlockParameters.thermal_port = "model";

You can modify all the conditional parameters of the Battery (Table-Based) block by using the
CellModelOptions property.

disp(batterycell.CellModelOptions.BlockParameters);

 T_dependence: no
 thermal_port: model
 prm_age_OCV: OCV

 Build Detailed Model of Battery Pack From Pouch Cells

4-151

 prm_age_capacity: disabled
 prm_age_resistance: disabled
 prm_age_modeling: equation
 prm_dyn: off
 prm_dir: noCurrentDirectionality
 prm_fade: disabled
 prm_leak: disabled

Create and Visualize Battery ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. You can specify the number of cells
connected in parallel by using the NumParallelCells property.

In this example, you create a parallel assembly using four of the pouch cells created in the previous
step, stacked in a single stack topology with a gap between the cells equal to 0.001 meters.

parallelassembly = ParallelAssembly(...
 NumParallelCells = 4, ...
 Cell = batterycell, ...
 Topology = "SingleStack", ...
 InterCellGap = simscape.Value(0.001, "m"));

The Topology property is a function of the cell format. For pouch cells, the only available topology is
"SingleStack". By default, the ParallelAssembly object stacks the cells along the Y axis.

Visualize the battery parallel assembly. Create the uifigure where you want to visualize your battery
parallel assembly and use the BatteryChart object.

f = uifigure("Color", "white");
parallelassemblychart = BatteryChart(Parent = f, Battery = parallelassembly);
title(parallelassemblychart, "Parallel Assembly Chart")

4 Examples

4-152

You can modify all the public properties inside the parallel assembly after its creation.

You can check the cell packaging volume and the mass of any battery by accessing the
PackagingVolume and CumulativeMass properties.

disp(parallelassembly.PackagingVolume)

 0.0022 : m^3

disp(parallelassembly.CumulativeMass)

 3.2000 : kg

Create and Visualize Battery Module Object

A battery module comprises multiple parallel assemblies connected in series. You can specify the
number of parallel assemblies connected in series by using the NumSeriesAssemblies property.
You can stack or geometrically assemble batteries along the X or Y axis of a Cartesian coordinate
system by using the StackingAxis property.

In this example, you create a battery module using 14 parallel assemblies that you created in the
previous step with an intergap between each assembly equal to 0.008 meters.

module = Module(...
 ParallelAssembly = parallelassembly, ...
 NumSeriesAssemblies = 14, ...
 InterParallelAssemblyGap = simscape.Value(0.008, "m"));

 Build Detailed Model of Battery Pack From Pouch Cells

4-153

Visualize the battery Module object. Create the uifigure where you want to visualize your battery
module and use the BatteryChart object.

f = uifigure("Color", "white");
modulechart = BatteryChart(Parent = f, Battery = module);
title(modulechart, "Module Chart")

Display the total packacing volume and cumulative mass of your battery module.

disp(module.PackagingVolume)

 0.0358 : m^3

disp(module.CumulativeMass)

 44.8000 : kg

You can modify all the public properties inside the module after its creation.

Create and Visualize Battery ModuleAssembly Object

A battery module assembly comprises multiple battery modules connected in series or in parallel. You
can define the number and types of modules by using the Module property. If a module assembly
comprises many identical modules, use the repmat function. Otherwise use an array of distinct
modules.

4 Examples

4-154

In this example, you create a battery module assembly by using two identical modules of the Module
object you created in the previous step, with an intergap between each module equal to 0.1 meters.
By default, the ModuleAssembly object electrically connects the modules in series.

moduleassembly = ModuleAssembly(...
 Module = repmat(module,1,2), ...
 InterModuleGap = simscape.Value(0.1, "m"));

Visualize the battery ModuleAssembly object. Create the uifigure where you want to visualize your
battery module assembly and use the BatteryChart object.

f = uifigure("Color", "white");
modulechart = BatteryChart(Parent = f, Battery = moduleassembly);
title(modulechart, "Module Assembly Chart")

All battery objects, including modules, have a Name property. The ModuleAssembly object
automatically assigns a unique name to all of its modules. To display the name of each module in your
ModuleAssembly object, use the Name property.

disp(moduleassembly.Module(1).Name);

Module1

disp(moduleassembly.Module(2).Name);

Module2

 Build Detailed Model of Battery Pack From Pouch Cells

4-155

You can modify the Name property to rename any of the modules inside a module assembly. Specify a
new name for the two modules in your battery module assembly.

moduleassembly.Module(1).Name = "MyModuleA";
moduleassembly.Module(2).Name = "MyModuleB";
disp(moduleassembly.Module(1).Name);

MyModuleA

disp(moduleassembly.Module(2).Name);

MyModuleB

A ModuleAssembly battery object also allows you to stack the modules along the Z axis. To stack
modules along the Z axis, use the NumLevels property.The NumLevels property defines the number
of levels, tiers, or floors of the module assembly. The ModuleAssembly object stacks the modules
symmetrically according to the number of levels and modules in the assembly.

For example, create a new module assembly object that comprises four identical modules stacked
along the Z axis on two levels.

zStackedModuleAssembly = ModuleAssembly(...
 Module = repmat(module,1,4), ...
 NumLevel = 2,...
 InterModuleGap = simscape.Value(0.1, "m"));

Visualize the ModuleAssembly object, zStackedModuleAssembly.

f = uifigure("Color", "white");
moduleAssemblyChart = BatteryChart(Parent = f, Battery = zStackedModuleAssembly);
title(moduleAssemblyChart, "Module Assembly Chart")

4 Examples

4-156

Create and Visualize Battery Pack Object

You now have all the foundational elements to create your battery pack. A battery pack comprises
multiple module assemblies connected in series or in parallel. You can define the number and types of
module assemblies by using the ModuleAssembly property. If a pack comprises many identical
module assemblies, use the repmat function. Otherwise use an array of distinct module assemblies.

In this example, you create a battery pack of four module assemblies. The first module assembly is
the module assembly stacked along the Z axis, zStackedModuleAssembly. The other three module
assemblies are three identical module assemblies that you created in the previous step.

batterypack2 = Pack(...
 ModuleAssembly = [zStackedModuleAssembly, repmat(moduleassembly,1,3)], ...
 StackingAxis = "X",...
 InterModuleAssemblyGap = simscape.Value(0.005, "m"));

Visualize the battery Pack object. Create the uifigure where you want to visualize your battery pack
and use the BatteryChart object.

f = uifigure("Color", "white");
packchart = BatteryChart(Parent = f, Battery = batterypack2);
title(packchart, "Pack Chart")

 Build Detailed Model of Battery Pack From Pouch Cells

4-157

The Pack object automatically assigns a unique name to all of its module assemblies upon creation.
To display the name of each module assembly in your Pack object, use the Name property.

disp(batterypack2.ModuleAssembly(1).Name);

ModuleAssembly1

disp(batterypack2.ModuleAssembly(2).Name);

ModuleAssembly2

disp(batterypack2.ModuleAssembly(3).Name);

ModuleAssembly3

disp(batterypack2.ModuleAssembly(4).Name);

ModuleAssembly4

You can use a Pack object to define a common cell balancing strategy for all the modules inside the
pack by specifying the BalancingStrategy property.

batterypack2.BalancingStrategy = "Passive";

Modifying this property at this level automatically modifies the same property inside all of the
underlying module components in the battery pack. Check the balancing strategy of the modules
inside your battery pack.

disp(batterypack2.ModuleAssembly(1).Module(1).BalancingStrategy);

4 Examples

4-158

Passive

disp(batterypack2.ModuleAssembly(2).Module(1).BalancingStrategy);

Passive

disp(batterypack2.ModuleAssembly(3).Module(1).BalancingStrategy);

Passive

disp(batterypack2.ModuleAssembly(4).Module(1).BalancingStrategy);

Passive

The BalancingStrategy property of each module in the pack updated to reflect the change you
have applied to the BalancingStrategy property of your Pack object.

Use the PackagingVolume and CumulativeMass properties to display the cumulative pack mass
and packaging volume of your battery pack.

disp(batterypack2.PackagingVolume)

 0.3579 : m^3

disp(batterypack2.CumulativeMass)

 448 : kg

Modify Model Resolution of Battery Objects

ParallelAssembly and Module objects have a ModelResolution property that allows you to set
the level of fidelity of the generated Simscape model used in simulations. You can specify the
ModelResolution property to either:

• Lumped — Lowest fidelity. The battery object uses only one electrical model. To obtain the fastest
compilation time and running time, use this value.

• Detailed — Highest fidelity. The battery object uses one electrical model and one thermal model
for each battery cell.

• Grouped — Custom simulation strategy, available only to Module objects.

You can view the simulation strategy by using the SimulationStrategyVisible property of the
BatteryChart object.

Modify Model Resolution for ParallelAssembly Object

A ParallelAssembly object uses a single battery Cell object as foundational repeating unit upon
its creation. Create a new ParallelAssembly object with the battery cell that you created at the
beginning of this example. By default, the ModelResoultion property of a ParallelAssembly
object is set to "Lumped".

lumpedParallelAssembly = ParallelAssembly(...
 NumParallelCells = 4, ...
 Cell = batterycell, ...
 Topology = "SingleStack", ...
 InterCellGap = simscape.Value(0.001, "m"));

Visualize the ParallelAssembly object and check the model resolution by setting the
SimulationStrategyVisible property to "on".

 Build Detailed Model of Battery Pack From Pouch Cells

4-159

f = uifigure("Color", "white");
paralllelAssemblyChartLumped = BatteryChart(Parent = f, Battery = lumpedParallelAssembly, SimulationStrategyVisible = "on");

Only one single cell model block represents all the cell components inside the orange box.

If you set the ModelResolution property of the parallel assembly to "Detailed", the
ParallelAssembly object instantiates a number of cell model blocks equal to the value of the
NumParallelCells property and connects them electrically in parallel in Simscape.

4 Examples

4-160

Change the model resolution of the previous ParallelAssembly object to "Detailed" and
visualize it by using the BatteryChart object and by setting the SimulationStrategyVisible
property to "on".

detailedPset = lumpedParallelAssembly;
detailedPset.ModelResolution = "Detailed";

f = uifigure("Color", "white");
paralllelAssemblyChartDetailed = BatteryChart(Parent = f, Battery = detailedPset, SimulationStrategyVisible = "on");

 Build Detailed Model of Battery Pack From Pouch Cells

4-161

A number of cell model blocks equal to the value of the NumParallelCells property represents
each cell component.

Modify Model Resolution for Module Object

Lumped Module Resolution

By default, the model resolution in modules and parallel assemblies is set to "Lumped". This means
that the generated battery model in Simscape only uses one electrical model to electrically simulate
all the battery cells within that system.

Check how the lumped module resolution works in Module objects. Create a Module object that
comprises 14 parallel assemblies.

lumpedmodule = Module(...
 ParallelAssembly = parallelassembly, ...
 NumSeriesAssemblies = 14, ...
 InterParallelAssemblyGap = simscape.Value(0.008, "m"), ...
 ModelResolution = "Lumped");

Visualize the Module object and check the model resolution by setting the
SimulationStrategyVisible property to "on".

f = uifigure("Color", "white");
modulechartlumped = BatteryChart(Parent = f, Battery = lumpedmodule, SimulationStrategyVisible = "on");

4 Examples

4-162

One electrical cell model simulates all the cells contained in the dotted orange box.

Detailed Module Resolution

Now change the model resolution of the previous Module object to "Detailed" and visualize it by
using the BatteryChart object and by setting the SimulationStrategyVisible property to
"on".

detailedmodule = lumpedmodule;
detailedmodule.ParallelAssembly.ModelResolution = "Detailed";
detailedmodule.ModelResolution = "Detailed";

For pouch modules, the detailed model resolution is not recommended as many cells are present
and it is important to keep the total number of models between 30 and 50.

f = uifigure("Color", "white");
modulechartdetailed = BatteryChart(Parent = f, Battery = detailedmodule, SimulationStrategyVisible = "on");

 Build Detailed Model of Battery Pack From Pouch Cells

4-163

A number of cell model blocks equal to the value of the NumParallelCells property represents
each cell component.

4 Examples

4-164

Grouped Module Resolution

For battery modules, you can also set the ModelResolution property to "Grouped". This
simulation strategy increases the model performance.

module.ModelResolution = "Grouped";

When you set the ModelResolution property of a module to "Grouped", you can define an
additional simulation strategy by using the SeriesGrouping and ParallelGrouping properties:

• SeriesGrouping — Custom modeling strategy for the module along the series connections,
specified as a strictly positive array of doubles. The length of the array of this property specifies
the number of individual electrical models required. Each element value of this array specifies
how many parallel assemblies are lumped within the specified electrical model. The sum of the
elements in the array must be equal to value of the NumSeriesAssemblies property.

 Build Detailed Model of Battery Pack From Pouch Cells

4-165

module.SeriesGrouping = [1,12,1];
f = uifigure("Color", "white");
modulechartgrouped = BatteryChart(Parent = f, Battery = module, SimulationStrategyVisible = "on");

• ParallelGrouping — Custom modeling strategy for the module for every parallel assembly
defined in the SeriesGrouping property, specified as a strictly positive array of doubles. The length
of the array of this property must be equal to the length of the array of the SeriesGrouping
property. Each element of this array specifies the number of individual electrical models for every
element in the array of the SeriesGrouping property. The values of the elements of this array can
be equal only to either 1 or the value of the NumParallelCells property. For example, if your
module comprises four parallel assemblies (NumSeriesAssemblies = 4), 48 pouch cells for each
parallel assembly (NumParallelCells = 48), and three individual electrical models where the
first model comprises two of the original parallel assemblies (SeriesGrouping = [2 1 1]), then if
you set this property to [1 1 48], the module is discretized in 50 individual electrical models
where each cell of the fourth parallel assembly has an electrical model.

Assign Model Resolution for ModuleAssembly Object

A ModuleAssembly object inherits the model resolution of its battery modules.

Create a ModuleAssembly object by using the lumpedmodule Module object that you created
previously.

module.ModelResolution = "Lumped";
moduleassemblylumped = ModuleAssembly(...
 Module = repmat(module,1,2), ...
 InterModuleGap = simscape.Value(0.1, "m"));

4 Examples

4-166

Then visualize the ModuleAssembly object and check the model resolution by setting the
SimulationStrategyVisible property to "on".

f = uifigure("Color", "white");
moduleAssemblyChart = BatteryChart(Parent = f, Battery = moduleassemblylumped , SimulationStrategyVisible = "on");
title(moduleAssemblyChart, "Module Assembly Grouped Simulation Strategy Chart")

The ModelResolution property of the ModuleAssembly object is automatically set to "Lumped"
because the ModelResolution properties of its modules are set to "Lumped".

Assign Model Resolution for Pack Object

A Pack object inherits the model resolution of its battery module assemblies.

Create a Pack object by using the moduleassemblylumped ModuleAssembly object that you created
in the previous step.

packlumped = Pack(...
 ModuleAssembly = repmat(moduleassemblylumped,1,4), ...
 StackingAxis = "X",...
 InterModuleAssemblyGap = simscape.Value(0.01, "m"));

Then visualize the Pack object and check the model resolution by setting the
SimulationStrategyVisible property to "on".

f = uifigure("Color", "white");
packlumpedchart = BatteryChart(Parent = f, Battery = packlumped , SimulationStrategyVisible = "on");
title(packlumpedchart, "Pack Lumped Simulation Strategy Chart")

 Build Detailed Model of Battery Pack From Pouch Cells

4-167

The ModelResolution property of the Pack object is automatically set to "Lumped" because the
ModelResolution properties of its module assemblies are set to "Lumped".

Build Simscape Model for the Battery Objects

After you have created your battery objects, you need to convert them into Simscape models to use
them in block diagrams. You can then use these models as reference for your system integration and
requirement evaluation, cooling system design, control strategy development, hardware-in-the-loop,
and many more applications.

To create a library that contains the Simscape Battery model of all the batteries object in this
example, use the buildBattery function.

buildBattery(packlumped,"LibraryName","pouchPackExample");

This function creates the pouchPackExample_lib and pouchPackExample SLX library files in your
working directory. The pouchPackExample_lib library contains the modules and parallel
assemblies sublibraries.

4 Examples

4-168

To access the Simscape models of your Module and ParallelAssembly objects, open the
pouchPackExample_lib. SLX file, double-click the sublibrary, and drag the Simscape blocks in your
model.

The pouchPackExample library contains the Simscape models of your ModuleAssembly and Pack
objects.

The Simscape models of your ModuleAssembly and Pack objects are subsystems. You can look
inside these subsystems by opening the packLibrary SLX file and double-click the subsystem.

See Also
Battery Builder

Related Examples
• “Build Simple Model of Battery Pack in MATLAB and Simscape” on page 4-211

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

 Build Detailed Model of Battery Pack From Pouch Cells

4-169

Build Model of Battery Module with Thermal Effects

This example shows how to create and build a Simscape™ system model of a battery module with
thermal effects in Simscape™ Battery™. To create the system model of a battery module, you must
first create the Cell and ParallelAssembly objects that comprise the battery module, and then
use the buildBattery function.

This figure shows the overall process to create a battery module object in a bottom-up approach:

A battery module comprises multiple parallel assemblies. These parallel assemblies, in turn, comprise
a number of battery cells connected electrically in parallel under a specific topological configuration
or geometrical arrangement.

Once you have created your battery pack object, the buildBattery function creates a library in
your working folder that contains a system model block of the battery pack. You can use this system
model as a reference in your simulations. The run-time parameters for these models, such as the
battery cell impedance or the battery open-circuit voltage, are defined after the model creation and
are therefore not covered by the Battery Pack Builder classes. To define the run-time parameters, you
can either specify them in the block mask of the generated Simscape models or use the
MaskParameters argument of the buildBattery function.

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

4 Examples

4-170

Explore Battery Module and Build Model in Battery Builder App

In this example, you programmatically create the battery module and all its subcomponents by calling
the relevant objects and functions in the MATLAB Command Window. Alternatively, if you prefer a
more interactive and visual approach, you can use the Battery Builder app. Using this app, you can
interactively import existing battery objects or build them from scratch, explore and edit properties,
and view the battery hierarchy and 3-D visualization. You can then build the Simscape system model
of your objects and use it as a reference in your simulations. You can also export the objects in your
workspace. To learn how to use the Battery Builder app to generate battery objects and build
Simscape models, see the “Get Started with Battery Builder App” on page 4-31 example.

Start by exploring the battery module that you create by following this example. Open the Battery
Builder app.

batteryBuilder

In the workspace, unzip the battery pack data.

unzip('BatteryModuleThermal.zip');

Import the battery module object stored inside the BatteryModuleThermal MAT file. Under the
Battery Builder tab, in the Import section of the toolstrip, click Import. Then click Import from
MAT-file and load the BatteryModuleThermal MAT file.

The Battery Builder app now displays a Module object and each of its subcomponents.

 Build Model of Battery Module with Thermal Effects

4-171

The Battery Browser panel on the left of the app contains all the battery objects in the current
active session of the app. You can select an object, visualize it in the Selected Battery tab, check its
hierarchy and child objects in the Battery Hierarchy panel, and edit its properties in the Properties
panel on the right of the app.

You can edit properties of the plot under the Battery Chart tab, such as the axes labels, axes
direction, title of the plot, and lights. You can also check the current simulation strategy and model
resolution of the selected battery object. To visualize the simulation strategy in the plot, in the
Simulation Strategy section of the toolstrip, check the Visible box.

Finally, to create a library model of the Module object, under the Battery Builder tab, in the
Library section of the toolstrip, click Create Library. In the new window, specify the folder in which
you want to save the library, the library name, and whether to use numeric values or variable names
for the mask parameters and mask initial targets.

Click Create Library to generate the library model of your battery object in the specified folder.
Open this model to access your battery objects as Simscape blocks that you can use as a starting
point for architecture evaluation in early development stages, software and hardware development,
system integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

Create Battery Module Object in MATLAB

This section shows how to programmatically generate the battery module object you have explored in
the app from the MATLAB Command Window. This is the same Module object stored in the
BatteryModuleThermal MAT file.

Create Cell Object

To create the battery Module object, first create a Cell object of pouch format.

pouchgeometry = PouchGeometry(Height = simscape.Value(0.1,"m"),...
 Length = simscape.Value(0.3,"m"), TabLocation = "Opposed");

4 Examples

4-172

The PouchGeometry object allows you to define the cylindrical geometrical arrangement of the
battery cell. You can specify the height, radius, and location of tabs of the cell by setting the Height,
Radius, and TabLocation properties of the PouchGeometry object. For more information on the
possible geometrical arrangements of a battery cell, see the CylindricalGeometry and
PrismaticGeometry documentation pages.

Now use this PouchGeometry object to create a pouch battery cell.

batterycell = Cell(Geometry = pouchgeometry)

batterycell =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.PouchGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]

Show all properties

For more information, see the Cell documentation page.

The Cell object allows you to simulate the thermal effects of the battery cell by using a simple 1-D
model. To simulate the thermal effects of the battery cell, in the BlockParameters property of the
CellModelOptions property of the Cell object, set the thermal_port property to "model" and
the T_dependence property to "yes".

batterycell.CellModelOptions.BlockParameters.thermal_port = "model";
batterycell.CellModelOptions.BlockParameters.T_dependence = "yes";

You can define the thermal boundary conditions for battery parallel assemblies and modules only if
you have previously defined a thermal model at the cell level.

Create ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. In this example, you create a parallel
assembly of three pouch cells.

To create the ParallelAssembly object, use the Cell object you created before and specify the
NumParallelCells property.

batteryparallelassembly = ParallelAssembly(Cell = batterycell,...
 NumParallelCells = 3, ...
 ModelResolution = "Detailed");

For more information, see the ParallelAssembly documentation page.

Create Module Object

You now have all the foundational elements to create your battery module. A battery module
comprises multiple parallel assemblies connected in series. In this example, you create a battery
module of 14 parallel assemblies with an intergap between each assembly of 0.005 meters. You also
define the model resolution of the module.

To create the Module object, use the ParallelAssembly object you created before and specify the
NumSeriesAssemblies, InterParallelAssemblyGap, and ModelResolution properties.

 Build Model of Battery Module with Thermal Effects

4-173

detailedbatterymodule = Module(ParallelAssembly = batteryparallelassembly,...
 NumSeriesAssemblies = 14, ...
 InterParallelAssemblyGap = simscape.Value(0.005,"m"), ...
 ModelResolution = "Detailed");

For more information, see the Module documentation page.

Define Thermal Boundary Conditions

For your Module object, you can define the thermal paths to the ambient, the coolant, and the
location of the cooling plate by using the AmbientThermalPath, CoolantThermalPath, and
CoolingPlate properties.

Define Ambient Thermal Path

To define a thermal path to ambient, set the AmbientThermalPath property to
"CellBasedThermalResistance". Setting this property automatically propagates its value to all
the subcomponent battery objects inside this Module object. However, this change does not
propagate to the other battery objects in your MATLAB workspace.

detailedbatterymodule.AmbientThermalPath = "CellBasedThermalResistance";

This command adds and connects one Thermal Resistor block to every thermal port in a cell model.
The other thermal ports from all resistors connect to a single thermal node. You can then connect this
thermal node with a constant temperature source or other blocks in the Simscape libraries.

Define Coolant Thermal Path

To define a thermal path from cells to the coolant, set the CoolantThermalPath property to
"CellBasedThermalResistance". Setting this property automatically propagates its value to all
the subcomponent battery objects inside this Module object. However, this change does not
propagate to the other battery objects in your MATLAB workspace.

detailedbatterymodule.CoolantThermalPath = "CellBasedThermalResistance";

This command adds and connects one Thermal Resistor block to every thermal port in a cell model.
The other thermal ports from all resistors connect to a single thermal node. You can then connect this

4 Examples

4-174

thermal node with a constant temperature source or other blocks in the Simscape libraries. You can
individually parameterize every thermal resistance with a different value.

You can use the Thermal Resistor block to capture the conduction resistance relative to the cell, the
thermal interface materials, and other materials along the path to the coolant. If you define a cooling
system such as a cooling plate for the battery module, the other thermal port of the Thermal Resistor
block is connected to an array of thermal nodes connector.

Define Cooling Plate Location

To define the location of the cooling plate on your battery module, set the CoolingPlate property to
either "Top" or "Bottom". Setting this property automatically propagates its value to all the
subcomponent battery objects inside this Module object. However, this change does not propagate to
the other battery objects in your MATLAB workspace.

detailedbatterymodule.CoolingPlate = "Bottom";

This command connects every thermal node of each cell model in your battery module to a
corresponding element inside an array of thermal nodes connector. If a CoolantThermalPath has
been enabled, then a thermal resistance will be added between each battery model and its
corresponding element inside the arrary of thermal nodes.

 Build Model of Battery Module with Thermal Effects

4-175

The array of thermal nodes is exposed at the module level as a single connector but is multi-
dimensional. You can connect an array of thermal nodes only to another array of thermal nodes of the
same size. You can add a Cooling Plate block from the Simscape Battery library as heat sink.

To facilitate multi-dimensional thermal domain connections, you can use the ThermalNodes property
of your Module object as input to the Cooling Plate block. You can view the number of thermal nodes,
dimensions, and locations of the thermal nodes of the underlying cell models by accesing the
ThermalNodes property.

disp(detailedbatterymodule.ThermalNodes);

 Bottom: [1×1 struct]
 Locations: [42×2 double]
 Dimensions: [42×2 double]
 NumNodes: 42

Visualize Battery Module and Check Model Resolution

To obtain the number of Simscape Battery Battery(Table-based) blocks used for the pack simulation,
use the NumModels property of your Module object.

disp(detailedbatterymodule.NumModels);

 42

To visualize the battery module before you build the system model and to view its model resolution,
use the BatteryChart object. Create the figure where you want to visualize your battery module.

Then use the BatteryChart object to visualize the battery module. To view the model resolution of
the module, set the SimulationStrategyVisible property of the BatteryChart object to "On".

f = uifigure(Color="w");
tl = tiledlayout(1,2,"Parent",f,"TileSpacing","Compact");
nexttile(tl)
batteryModuleChart1 = BatteryChart(Parent = tl, Battery = detailedbatterymodule);
nexttile(tl)
batteryModuleChart2 = BatteryChart(Parent = tl, Battery = detailedbatterymodule, SimulationStrategyVisible = "On");

4 Examples

4-176

For more information, see the BatteryChart documentation page.

Build Simscape Model for the Battery Module Object

After you have created your battery objects, you need to convert them into Simscape models to use
them in block diagrams. You can then use these models as reference for your system integration and
requirement evaluation, cooling system design, control strategy development, hardware-in-the-loop,
and many more applications.

To create a library that contains the Simscape Battery model of the Module object you created in this
example, use the buildBattery function.

buildBattery(detailedbatterymodule,"LibraryName","moduleBTMSExample");

This function creates a library named moduleBTMSExample_lib in your working directory. This
library contains the Simscape models of your Module and ParallelAssembly objects.

 Build Model of Battery Module with Thermal Effects

4-177

To build a more detailed model of a battery pack, see the “Build Detailed Model of Battery Pack From
Pouch Cells” on page 4-148 example.

For an application of a battery thermal effects model with a coolant thermal path, see the “Protect
Battery During Charge and Discharge for Electric Vehicle” on page 4-77 example.

See Also
Battery Builder

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7
• “Connect Cooling Plate to Battery Blocks” on page 3-2

4 Examples

4-178

Build Model of Battery Pack with Cell Aging

This example shows how to create and build a Simscape™ system model of a battery pack that
includes cell aging in Simscape™ Battery™. Predicting the lifetime of battery cells under a specific
application is fundamental to assess warranty risk, develop second-life applications, and perform
virtiual design verification.

To create the system model of a battery pack, you must first create the Cell, ParallelAssembly,
Module, and ModuleAssembly objects that comprise the battery pack, and then use the
buildBattery function.

This figure shows the overall process to create a battery pack object in a bottom-up approach:

A battery pack comprises multiple module assemblies. These module assemblies, in turn, comprise a
number of battery modules connected electrically in series or in parallel. The battery modules are
made of multiple parallel assemblies which, in turn, comprise a number of battery cells connected
electrically in parallel under a specific topological configuration or geometrical arrangement.

Once you have created your battery pack object, the buildBattery function creates a library in
your working folder that contains a system model block of the battery pack. You can use this system
model as a reference in your simulations. The run-time parameters for these models, such as the
battery cell impedance or the battery open-circuit voltage, are defined after the model creation and
are therefore not covered by the Battery Pack Builder classes. To define the run-time parameters, you
can either specify them in the block mask of the generated Simscape models or use the
MaskParameters argument of the buildBattery function.

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

 Build Model of Battery Pack with Cell Aging

4-179

import simscape.battery.builder.*

Explore Battery Pack and Build Model in Battery Builder App

In this example, you programmatically create the battery pack and all its subcomponents by calling
the relevant objects and functions in the MATLAB Command Window. Alternatively, if you prefer a
more interactive and visual approach, you can use the Battery Builder app. Using this app, you can
interactively import existing battery objects or build them from scratch, explore and edit properties,
and view the battery hierarchy and 3-D visualization. You can then build the Simscape system model
of your objects and use it as a reference in your simulations. You can also export the objects in your
workspace. To learn how to use the Battery Builder app to generate battery objects and build
Simscape models, see the “Get Started with Battery Builder App” on page 4-31 example.

Start by exploring the battery pack that you create by following this example. Open the Battery
Builder app.

batteryBuilder

In the workspace, unzip the battery pack data.

unzip('BatteryPackCellAging.zip');

Import the battery pack object stored inside the BatteryPackCellAging MAT file. Under the
Battery Builder tab, in the Import section of the toolstrip, click Import. Then click Import from
MAT-file and load the BatteryPackCellAging MAT file.

The Battery Builder app now displays a Pack object and each of its subcomponents.

4 Examples

4-180

The Battery Browser panel on the left of the app contains all the battery objects in the current
active session of the app. You can select an object, visualize it in the Selected Battery tab, check its
hierarchy and child objects in the Battery Hierarchy panel, and edit its properties in the Properties
panel on the right of the app.

You can edit properties of the plot under the Battery Chart tab, such as the axes labels, axes
direction, title of the plot, and lights. You can also check the current simulation strategy and model
resolution of the selected battery object. To visualize the simulation strategy in the plot, in the
Simulation Strategy section of the toolstrip, check the Visible box.

Finally, to create a library model of the Pack object, under the Battery Builder tab, in the Library
section of the toolstrip, click Create Library. In the new window, specify the folder in which you
want to save the library, the library name, and whether to use numeric values or variable names for
the mask parameters and mask initial targets.

 Build Model of Battery Pack with Cell Aging

4-181

Click Create Library to generate the library model of your battery object in the specified folder.
Open this model to access your battery objects as Simscape blocks that you can use as a starting
point for architecture evaluation in early development stages, software and hardware development,
system integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

Create Battery Pack Object in MATLAB

This section shows how to programmatically generate the battery pack object you have explored in
the app from the MATLAB Command Window. This is the same Pack object stored in the
BatteryPackCellAging MAT file.

Create Cell Object and Specify Aging Effects

To create the battery Module object, first create a Cell object of pouch format.

pouchgeometry = PouchGeometry()

The PouchGeometry object allows you to define the pouch geometrical arrangement of the battery
cell. For more information on the possible geometrical arrangements of a battery cell, see the
CylindricalGeometry and PrismaticGeometry documentation pages.

Now use this PouchGeometry object to create a pouch battery cell.

batterycell = Cell(Geometry = pouchgeometry)

For more information, see the Cell documentation page.

The Cell object allows you to simulate the aging effects of the battery cell by specifying these
properties:

• prm_age_capacity — Capacity calendar aging. This property allows you to decide whether to
model the calendar aging effects on the capacity of a battery cell.

4 Examples

4-182

• prm_age_resistance — Internal resistance calendar aging. This property allows you to decide
whether to model the calendar aging effects on the internal resistance of a battery cell.

• prm_age_modeling — Modeling option. This property allows you to specify how to
mathematically model the aging effects on the capacity and internal resistance of a battery cell.

To simulate the cycling aging effects of the battery cell, in the BlockParameters property of the
CellModelOptions property of the Cell object, set the prm_fade property to "equations".

batterycell.CellModelOptions.BlockParameters.prm_fade = "equations";

The Cell object also allows you to simulate the thermal effects of the battery cell by using a simple 1-
D model. To simulate the thermal effects of the battery cell, in the BlockParameters property of the
CellModelOptions property of the Cell object, set the thermal_port property to "model".

batterycell.CellModelOptions.BlockParameters.thermal_port = "model";

Create ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. In this example, you create a parallel
assembly of three pouch cells.

To create the ParallelAssembly object, use the Cell object you created before and specify the
NumParallelCells property according to your design.

batteryparallelassembly = ParallelAssembly(Cell = batterycell,...
 NumParallelCells = 3, StackingAxis = "X");

For more information, see the ParallelAssembly documentation page.

Create Module Object

A battery module comprises multiple parallel assemblies connected in series. In this example, you
create a battery module of 4 parallel assemblies stacked along the X axis, with an intergap between
each assembly of 0.005 meters.

To create the Module object, use the ParallelAssembly object you created in the previous step
and specify the NumSeriesAssemblies, InterParallelAssemblyGap, and StackingAxis
properties.

batterymodule = Module(ParallelAssembly = batteryparallelassembly,...
 NumSeriesAssemblies = 4, ...
 InterParallelAssemblyGap = simscape.Value(0.005,"m"), ...
 StackingAxis = "X");

For more information, see the Module documentation page.

Create ModuleAssembly Object

A battery module assembly comprises multiple battery modules connected in series or in parallel. In
this example, you create a battery module assembly of five identical modules with an intergap
between each module equal to 0.1 meters. By default, the ModuleAssembly object electrically
connects the modules in series.

To create the ModuleAssembly object, use the Module object you created in the previous step and
specify the InterModuleGap and StackingAxis properties.

 Build Model of Battery Pack with Cell Aging

4-183

batterymoduleassembly = ModuleAssembly(Module = repmat(batterymodule,1,5),...
 InterModuleGap = simscape.Value(0.1,"m"), ...
 StackingAxis = "Y");

For more information, see the ModuleAssembly documentation page.

Create Pack Object

You now have all the foundational elements to create your battery pack. A battery pack comprises
multiple module assemblies connected in series or in parallel. In this example, you create a battery
pack of 5 identical module assemblies with an intergap between each module assembly of 0.01
meters and a coolant thermal path.

To create the Pack object, use the ModuleAssembly object you created in the previous step and
specify the InterModuleAssemblyGap and CoolantThermalPath properties. Setting the
CoolantThermalPath property automatically propagates its value to all the subcomponent battery
objects inside this Pack object. However, this change does not propagate to the other battery objects
in your MATLAB workspace.

batterypack = Pack(ModuleAssembly = repmat(batterymoduleassembly,1,5),...
 InterModuleAssemblyGap = simscape.Value(0.01,"m"),...
 CoolantThermalPath = "CellBasedThermalResistance");

For more information, see the Pack documentation page.

Visualize Battery Pack and Check Model Resolution

To visualize the battery pack before you build the system model and to view its model resolution, use
the BatteryChart object. Create the figure where you want to visualize your battery pack.

f = uifigure(Color="w");

Then use the BatteryChart object to visualize the battery pack. To view the model resolution of the
module, set the SimulationStrategyVisible property of the BatteryChart object to "On".

batterypackchart = BatteryChart(Parent = f, Battery = batterypack, ...
 SimulationStrategyVisible = "on");

4 Examples

4-184

To add default axis labels to the battery plot, use the setDefaultLabels method of the
BatteryChart object.

For more information about the BatteryChart object, see the BatteryChart documentation page.

Build Simscape Model for the Battery Pack Object

After you have created your battery objects, you need to convert them into Simscape models to use
them in block diagrams. You can then use these models as reference for your system integration and
requirement evaluation, cooling system design, control strategy development, hardware-in-the-loop,
and many more applications.

buildBattery(batterypack,"LibraryName","packAgingExample")

This function creates the packAgingExample_lib and packAgingExample SLX library files in your
working directory. The packAgingExample_lib library contains the Modules and
ParallelAssemblies sublibraries.

 Build Model of Battery Pack with Cell Aging

4-185

To access the Simscape models of your Module and ParallelAssembly objects, open the
packAgingExample_lib. SLX file, double-click the sublibrary, and drag the Simscape blocks in your
model.

The packAgingExample library contains the Simscape models of your ModuleAssembly and Pack
objects.

The Simscape models of your ModuleAssembly and Pack objects are subsystems. You can look
inside these subsystems by opening the packLibrary SLX file and double-click the subsystem.

To see how to evaluate a new and end-of-life (EOL) lithium-ion battery pack, see the “Thermal
Analysis for New and Aged Battery Packs” on page 4-105 example.

See Also
Battery Builder

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-186

Build Model of Battery Pack with Cell Balancing Circuit

This example shows how to create and build a Simscape™ system model of a battery pack with cell
balancing circuits in Simscape™ Battery™. High voltage (> 60V) battery pack systems typically
consist of multiple parallel assemblies or cells connected electrically in series. In these systems, the
state of charge of individual parallel assemblies or cells often becomes unbalanced over time due to
multiple causes.

To create the system model of a battery pack, you must first create the Cell, ParallelAssembly,
Module, and ModuleAssembly objects that comprise the battery pack, and then use the
buildBattery function.

This figure shows the overall process to create a battery pack object in a bottom-up approach:

A battery pack comprises multiple module assemblies. These module assemblies, in turn, comprise a
number of battery modules connected electrically in series or in parallel. The battery modules are
made of multiple parallel assemblies which, in turn, comprise a number of battery cells connected
electrically in parallel under a specific topological configuration or geometrical arrangement.

Once you have created your battery pack object, the buildBattery function creates a library in
your working folder that contains a system model block of a battery pack. You can use this system
model as a reference in your simulations. The run-time parameters for these models, such as the
battery cell impedance or the battery open-circuit voltage, are defined after the model creation and
are therefore not covered by the Battery Pack Builder classes. To define the run-time parameters, you
can either specify them in the block mask of the generated Simscape models or use the
MaskParameters argument of the buildBattery function.

 Build Model of Battery Pack with Cell Balancing Circuit

4-187

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

Explore Battery Pack and Build Model in Battery Builder App

In this example, you programmatically create the battery pack and all its subcomponents by calling
the relevant objects and functions in the MATLAB Command Window. Alternatively, if you prefer a
more interactive and visual approach, you can use the Battery Builder app. Using this app, you can
interactively import existing battery objects or build them from scratch, explore and edit properties,
and view the battery hierarchy and 3-D visualization. You can then build the Simscape system model
of your objects and use it as a reference in your simulations. You can also export the objects in your
workspace. To learn how to use the Battery Builder app to generate battery objects and build
Simscape models, see the “Get Started with Battery Builder App” on page 4-31 example.

Start by exploring the battery pack that you create by following this example. Open the Battery
Builder app.

batteryBuilder

In the workspace, unzip the battery pack data.

unzip('BatteryPackCellBalancing.zip');

Import the battery pack object stored inside the BatteryPackCellBalancing MAT file. Under the
Battery Builder tab, in the Import section of the toolstrip, click Import. Then click Import from
MAT-file and load the BatteryPackCellBalancing MAT file.

The Battery Builder app now displays a Pack object and each of its subcomponents.

4 Examples

4-188

The Battery Browser panel on the left of the app contains all the battery objects in the current
active session of the app. You can select an object, visualize it in the Selected Battery tab, check its
hierarchy and child objects in the Battery Hierarchy panel, and edit its properties in the Properties
panel on the right of the app.

You can edit properties of the plot under the Battery Chart tab, such as the axes labels, axes
direction, title of the plot, and lights. You can also check the current simulation strategy and model
resolution of the selected battery object. To visualize the simulation strategy in the plot, in the
Simulation Strategy section of the toolstrip, check the Visible box.

Finally, to create a library model of the Pack object, under the Battery Builder tab, in the Library
section of the toolstrip, click Create Library. In the new window, specify the folder in which you
want to save the library, the library name, and whether to use numeric values or variable names for
the mask parameters and mask initial targets.

 Build Model of Battery Pack with Cell Balancing Circuit

4-189

Click Create Library to generate the library model of your battery object in the specified folder.
Open this model to access your battery objects as Simscape blocks that you can use as a starting
point for architecture evaluation in early development stages, software and hardware development,
system integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

Create Battery Pack Object in MATLAB

This section shows how to programmatically generate the battery pack object you have explored in
the app from the MATLAB Command Window. This is the same Pack object stored in the
BatteryPackCellBalancing MAT file.

Create Cell Object

To create the battery Pack object, first create a Cell object of cylindrical format.

cylindricalgeometry = CylindricalGeometry(Height = simscape.Value(0.07,"m"),...
 Radius = simscape.Value(0.0105,"m"));

The CylindricalGeometry object allows you to define the cylindrical geometrical arrangement of
the battery cell. You can specify the height and radius of the cell by setting the Height and Radius
properties of the CylindricalGeometry object. For more information on the possible geometrical
arrangements of a battery cell, see the PouchGeometry and PrismaticGeometry documentation
pages.

Now use this CylindricalGeometry object to create a cylindrical battery cell.

batterycell = Cell(Geometry = cylindricalgeometry)

batterycell =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.CylindricalGeometry]

4 Examples

4-190

 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]

Show all properties

For more information, see the Cell documentation page.

Create ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. In this example, you create a parallel
assembly of four cylindrical cells stacked in a square topology over four rows.

To create the ParallelAssembly object, use the Cell object you created before and specify the
NumParallelCells, Rows, and Topology properties according to your design.

batteryparallelassembly = ParallelAssembly(Cell = batterycell,...
 NumParallelCells = 4, ...
 Rows = 4, ...
 Topology = "Square", ...
 ModelResolution = "Detailed");

For more information, see the ParallelAssembly documentation page.

Create Module Object

A battery module comprises multiple parallel assemblies connected in series. In this example, you
create a battery module of four parallel assemblies with an intergap between each assembly of 0.005
meters. You also define the model resolution of the module and add an ambient thermal boundary
condition.

To create the Module object, use the ParallelAssembly object you created in the previous step
and specify the NumSeriesAssemblies, InterParallelAssemblyGap, and ModelResolution
properties.

batterymodule = Module(ParallelAssembly = batteryparallelassembly,...
 NumSeriesAssemblies = 4, ...
 InterParallelAssemblyGap = simscape.Value(0.005,"m"), ...
 ModelResolution = "Detailed");

For more information, see the Module documentation page.

Create ModuleAssembly Object

A battery module assembly comprises multiple battery modules connected in series or in parallel. In
this example, you create a battery module assembly of two identical modules with an intergap
between each module equal to 0.005 meters. By default, the ModuleAssembly object electrically
connects the modules in series.

To create the ModuleAssembly object, use the Module object you created in the previous step and
specify the InterModuleGap property.

batterymoduleassembly= ModuleAssembly(Module = repmat(batterymodule,1,2),...
 InterModuleGap = simscape.Value(0.005,"m"));

For more information, see the ModuleAssembly documentation page.

 Build Model of Battery Pack with Cell Balancing Circuit

4-191

Create Pack Object

You now have all the foundational elements to create your battery pack. A battery pack comprises
multiple module assemblies connected in series or in parallel. In this example, you create a battery
pack of two identical module assemblies with an intergap between each module assembly of 0.005
meters.

To create the Pack object, use the ModuleAssembly object you created in the previous step and
specify the InterModuleAssemblyGap property.

batterypack= Pack(ModuleAssembly = repmat(batterymoduleassembly,1,2),...
 InterModuleAssemblyGap = simscape.Value(0.005,"m"));

For more information, see the Pack documentation page.

Define Cell Balancing Strategy

The Pack object allows you to define a cell balancing strategy. Specifying a balancing strategy adds
an ideal passive balancing circuit to every parallel assembly inside the battery pack. The balancing
circuit consists of a balancing resistor connected in series to a signal controlled switch.

To define the balancing strategy of your battery, set the BalancingStrategy property of the
batterypack object to "Passive".

batterypack.BalancingStrategy = "Passive";

4 Examples

4-192

Visualize Battery Pack and Check Model Resolution

To obtain the number of Simscape Battery Battery(Table-based) blocks used for the pack simulation,
use the NumModels property of your Pack object.

disp(batterypack.NumModels);

 64

To visualize the battery pack before you build the system model and to view its model resolution, use
the BatteryChart object. Create the figure where you want to visualize your battery pack.

f = uifigure(Color="w");

Then use the BatteryChart object to visualize the battery module. To view the model resolution of
the module, set the SimulationStrategyVisible property of the BatteryChart object to "On".

tl = tiledlayout(1,2,"Parent",f,"TileSpacing","Compact");
nexttile(tl)
batterypackchart = BatteryChart(Parent = tl, Battery = batterypack);
nexttile(tl)
batterypackchart = BatteryChart(Parent = tl, Battery = batterypack, SimulationStrategyVisible = "On");

For more information, see the BatteryChart documentation page.

Build Simscape Model for the Battery Module Object

After you have created your battery objects, you need to convert them into Simscape models to use
them in block diagrams. You can then use these models as reference for your system integration and

 Build Model of Battery Pack with Cell Balancing Circuit

4-193

requirement evaluation, cooling system design, control strategy development, hardware-in-the-loop,
and many more applications.

To create a library that contains the Simscape Battery model of the Module object in this example,
use the buildBattery function.

buildBattery(batterypack,"LibraryName","packBalancingExample");

This function creates the packBalancingExample_lib and packBalancingExample SLX library
files in your working directory. The packBalancingExample_lib library contains the Modules and
ParallelAssemblies sublibraries.

To access the Simscape models of your Module and ParallelAssembly objects, open the
packBalancingExample_lib SLX file, double-click the sublibrary, and drag the Simscape blocks in
your model.

The packBalancingExample library contains the Simscape models of your ModuleAssembly and
Pack objects.

The Simscape models of your ModuleAssembly and Pack objects are subsystems. You can look
inside these subsystems by opening the packLibrary SLX file and double-click the subsystem.

4 Examples

4-194

To learn how to implement a passive cell balancing strategy for a lithium-ion batery pack, see the
“Size Resistor for Battery Passive Cell Balancing” on page 4-109 example.

See Also
Battery Builder

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

 Build Model of Battery Pack with Cell Balancing Circuit

4-195

Build Model of Battery Pack for Grid Application

This example shows how to use Simscape™ Battery™ to create and build a Simscape™ system model
of a battery pack from prismatic cells for grid applications. Battery-based energy storage is a good
option for integrating intermittent renewable energy sources into the grid. The battery pack is a 150
kWh prismatic battery for grid-level applications. To create the system model of a battery pack, you
must first create the Cell, ParallelAssembly, Module, and ModuleAssembly objects that
comprise the battery pack, and then use the buildBattery function.

This figure shows the overall process to create a battery pack object in a bottom-up approach:

A battery pack comprises multiple module assemblies. These module assemblies, in turn, comprise a
number of battery modules connected electrically in series or in parallel. The battery modules are
made of multiple parallel assemblies which, in turn, comprise a number of battery cells connected
electrically in parallel under a specific topological configuration or geometrical arrangement.

Once you have created your battery pack object, the buildBattery function function creates a
library in your working folder that contains a system model block of a battery pack. You can use this
system model as a reference in your simulations. The run-time parameters for these models, such as
the battery cell impedance or the battery open-circuit voltage, are defined after the model creation
and are therefore not covered by the Battery Pack Builder classes. To define the run-time parameters,
you can either specify them in the block mask of the generated Simscape models or use the
MaskParameters argument of the buildBattery function.

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

4 Examples

4-196

Explore Battery Pack and Build Model in Battery Builder App

In this example, you programmatically create the battery pack and all its subcomponents by calling
the relevant objects and functions in the MATLAB Command Window. Alternatively, if you prefer a
more interactive and visual approach, you can use the Battery Builder app. Using this app, you can
interactively import existing battery objects or build them from scratch, explore and edit properties,
and view the battery hierarchy and 3-D visualization. You can then build the Simscape system model
of your objects and use it as a reference in your simulations. You can also export the objects in your
workspace. To learn how to use the Battery Builder app to generate battery objects and build
Simscape models, see the “Get Started with Battery Builder App” on page 4-31 example.

Start by exploring the battery pack that you create by following this example. Open the Battery
Builder app.

batteryBuilder

In the workspace, unzip the battery pack data.

unzip('BatteryPackGridApplication.zip');

Import the battery pack object from the BatteryPackGridApplication MAT file. Under the
Battery Builder tab, in the Import section of the toolstrip, click Import. Then click Import from
MAT-file and load the BatteryPackGridApplication MAT file.

The Battery Builder app now displays a Pack object and each of its subcomponents.

The Battery Browser panel on the left of the app contains all the battery objects in the current
active session of the app. You can select an object, visualize it in the Selected Battery tab, check its

 Build Model of Battery Pack for Grid Application

4-197

hierarchy and child objects in the Battery Hierarchy panel, and edit its properties in the Properties
panel on the right of the app.

You can edit properties of the plot under the Battery Chart tab, such as the axes labels, axes
direction, title of the plot, and lights. You can also check the current simulation strategy and model
resolution of the selected battery object. To visualize the simulation strategy in the plot, in the
Simulation Strategy section of the toolstrip, check the Visible box.

Finally, to create a library model of the Pack object, under the Battery Builder tab, in the Library
section of the toolstrip, click Create Library. In the new window, specify the folder in which you
want to save the library, the library name, and whether to use numeric values or variable names for
the mask parameters and mask initial targets.

Click Create Library to generate the library model of your battery object in the specified folder.
Open this model to access your battery objects as Simscape blocks that you can use as a starting
point for architecture evaluation in early development stages, software and hardware development,
system integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

Create Battery Pack Object in MATLAB

This section shows how to programmatically generate the battery pack object you have explored in
the app from the MATLAB Command Window. This is the same Pack object stored in the
BatteryPackGridApplication MAT file.

Create Cell Object

To create the battery Pack object, first create a Cell object of prismatic format.

prismaticgeometry = PrismaticGeometry(Height = simscape.Value(0.2,"m"),...
 Length = simscape.Value(0.35,"m"), Thickness = simscape.Value(0.07,"m"));

4 Examples

4-198

The PrismaticGeometry object allows you to define the pouch geometrical arrangement of the
battery cell. You can specify the height, length, and thickness of the cell by setting the Height,
Length, and Thickness properties of the PrismaticGeometry object. For more information on the
possible geometrical arrangements of a battery cell, see the CylindricalGeometry and
PouchGeometry documentation pages.

Now use this PrismaticGeometry object to create a prismatic battery cell.

batterycell = Cell(Geometry = prismaticgeometry)

batterycell =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.PrismaticGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]

Show all properties

For more information, see the Cell documentation page.

The Cell object allows you to simulate the thermal effects of the battery cell by using a simple 1-D
model. To simulate the thermal effects of the battery cell, in the BlockParameters property of the
CellModelOptions property of the Cell object, set the thermal_port parameter to "model".

batterycell.CellModelOptions.BlockParameters.thermal_port = "model";

Create ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. In this example, you create a parallel
assembly of one prismatic cell.

To create the ParallelAssembly object, use the Cell object you created before and specify the
NumParallelCells property according to your design.

batteryparallelassembly = ParallelAssembly(Cell = batterycell,...
 NumParallelCells = 1)

batteryparallelassembly =
 ParallelAssembly with properties:

 NumParallelCells: 1
 Cell: [1×1 simscape.battery.builder.Cell]
 Topology: "SingleStack"
 Rows: 1
 ModelResolution: "Lumped"

Show all properties

For more information, see the ParallelAssembly documentation page.

 Build Model of Battery Pack for Grid Application

4-199

Create Module Object

A battery module comprises multiple parallel assemblies connected in series. In this example, you
create a battery module of 22 parallel assemblies with an intergap between each assembly of 0.005
meters.

To create the Module object, use the ParallelAssembly object you created in the previous step
and specify the NumSeriesAssemblies and InterParallelAssemblyGap properties.

batterymodule = Module(ParallelAssembly = batteryparallelassembly,...
 NumSeriesAssemblies = 22, ...
 InterParallelAssemblyGap = simscape.Value(0.005,"m"), ...
 ModelResolution = "Lumped")

batterymodule =
 Module with properties:

 NumSeriesAssemblies: 22
 ParallelAssembly: [1×1 simscape.battery.builder.ParallelAssembly]
 ModelResolution: "Lumped"
 SeriesGrouping: 22
 ParallelGrouping: 1

Show all properties

For more information, see the Module documentation page.

Create ModuleAssembly Object

A battery module assembly comprises multiple battery modules connected in series or in parallel. In
this example, you create a battery module assembly of ten identical modules stacked on ten different
levels, with an intergap between each module equal to 0.05 meters. By default, the ModuleAssembly
object electrically connects the modules in series.

To create the ModuleAssembly object, use the Module object you created in the previous step and
specify the InterModuleGap and NumLevels properties.

batterymoduleassembly = ModuleAssembly(Module = repmat(batterymodule,1,10),...
 InterModuleGap = simscape.Value(0.05,"m"), ...
 NumLevels = 10)

batterymoduleassembly =
 ModuleAssembly with properties:

 Module: [1×10 simscape.battery.builder.Module]

Show all properties

For more information, see the ModuleAssembly documentation page.

Create Pack Object

You now have all the foundational elements to create your battery pack. A battery pack comprises
multiple module assemblies connected in series or in parallel. In this example, you create a battery
pack of one module assembly.

4 Examples

4-200

To create the Pack object, use the ModuleAssembly object you created in the previous step.

batterypack = Pack(ModuleAssembly = batterymoduleassembly)

batterypack =
 Pack with properties:

 ModuleAssembly: [1×1 simscape.battery.builder.ModuleAssembly]

Show all properties

For more information, see the Pack documentation page.

Visualize Battery Pack and Check Model Resolution

To visualize the battery pack before you build the system model and to view its model resolution, use
the BatteryChart object. Create the figure where you want to visualize your battery pack.

f = uifigure(Color="w");

Then use the BatteryChart object to visualize the battery pack. To view the model resolution of the
module, set the SimulationStrategyVisible property of the BatteryChart object to "On".

batterypackchart = BatteryChart(Parent = f, Battery = batterypack, ...
 SimulationStrategyVisible = "on");

 Build Model of Battery Pack for Grid Application

4-201

To add default axis labels to the battery plot, use the setDefaultLabels method of the
BatteryChart object.

For more information, see the BatteryChart documentation page.

Build Simscape Model for the Battery Pack Object

After you have created your battery objects, you need to convert them into Simscape models to use
them in block diagrams. You can then use these models as reference for your system integration and
requirement evaluation, cooling system design, control strategy development, hardware-in-the-loop,
and many more applications.

To create a library that contains the Simscape Battery model of the Pack object you created in this
example, use the buildBattery function.

buildBattery(batterypack,"LibraryName","packGridExample");

This function creates the packGridExample_lib and packGridExample SLX library files in your
working directory. The packGridExample_lib library contains the Modules and ParallelAssemblies
sublibraries.

To access the Simscape models of your Module and ParallelAssembly objects, open the
packGridExample_lib SLX file, double-click the sublibrary, and drag the Simscape blocks in your
model.

The packGridExample library contains the Simscape models of your ModuleAssembly and Pack
objects.

4 Examples

4-202

The Simscape models of your ModuleAssembly and Pack objects are subsystems. You can look
inside these subsystems by opening the packLibrary SLX file and double-click the subsystem.

For more information, see the buildBattery documentation page.

Copyright 2022 The MathWorks, Inc.

See Also
Battery Builder

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

 Build Model of Battery Pack for Grid Application

4-203

Build Simple Model of Battery Module in MATLAB and Simscape

This example shows how to create and build a Simscape™ system model of a battery module in
Simscape™ Battery™. The battery module is a 48 V battery for an electric bike application. To create
the system model of a battery module, you must first create the Cell and ParallelAssembly
objects that comprise the battery module, and then use the buildBattery function.

This figure shows the overall process to create a battery module object in a bottom-up approach:

A battery module comprises multiple parallel assemblies. These parallel assemblies, in turn, comprise
a number of battery cells connected electrically in parallel under a specific topological configuration
or geometrical arrangement.

After you create your battery module object, the buildBattery function creates a library in your
working folder that contains a system model block of a battery module. You can use this system model
as a reference in your simulations. The run-time parameters for these models, such as the battery cell
impedance or the battery open-circuit voltage, are defined after the model creation and are therefore
not covered by the Battery Pack Builder classes. To define the run-time parameters, you can either
specify them in the block mask of the generated Simscape models or use the MaskParameters
argument of the buildBattery function.

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

4 Examples

4-204

Explore Battery Module and Build Model in Battery Builder App

In this example, you programmatically create the battery module and all its subcomponents by calling
the relevant objects and functions in the MATLAB Command Window. Alternatively, if you prefer a
more interactive and visual approach, you can use the Battery Builder app. Using this app, you can
interactively import existing battery objects or build them from scratch, explore and edit properties,
and view the battery hierarchy and 3-D visualization. You can then build the Simscape system model
of your objects and use it as a reference in your simulations. You can also export the objects in your
workspace. To learn how to use the Battery Builder app to generate battery objects and build
Simscape models, see the “Get Started with Battery Builder App” on page 4-31 example.

Start by exploring the battery module that you create by following this example. Open the Battery
Builder app.

batteryBuilder

In the workspace, unzip the battery module data.

unzip('SimpleBatteryModule.zip');

Import the battery module object from the SimpleBatteryModule MAT file. Under the Battery
Builder tab, in the Import section of the toolstrip, click Import. Then click Import from MAT-file
and load the SimpleBatteryModule MAT file.

The Battery Builder app now displays a Module object and each of its subcomponents.

 Build Simple Model of Battery Module in MATLAB and Simscape

4-205

The Battery Browser panel on the left of the app contains all the battery objects in the current
active session of the app. You can select an object, visualize it in the Selected Battery tab, check its
hierarchy and child objects in the Battery Hierarchy panel, and edit its properties in the Properties
panel on the right of the app.

You can edit properties of the plot under the Battery Chart tab, such as the axes labels, axes
direction, title of the plot, and lights. You can also check the current simulation strategy and model
resolution of the selected battery object. To visualize the simulation strategy in the plot, in the
Simulation Strategy section of the toolstrip, check the Visible box.

Finally, to create a library model of the Module object, under the Battery Builder tab, in the
Library section of the toolstrip, click Create Library. In the new window, specify the folder in which
you want to save the library, the library name, and whether to use numeric values or variable names
for the mask parameters and mask initial targets.

Click Create Library to generate the library model of your battery object in the specified folder.
Open this model to access your battery objects as Simscape blocks that you can use as a starting
point for architecture evaluation in early development stages, software and hardware development,
system integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

Create Battery Module Object in MATLAB

This section shows how to programmatically generate the battery module object you have explored in
the app from the MATLAB Command Window. This is the same Module object stored in the
SimpleBatteryModule MAT file.

Create Cell Object

To create the battery Module object, first create a Cell object of cylindrical format.

cylindricalgeometry = CylindricalGeometry(Height = simscape.Value(0.07,"m"),...
 Radius = simscape.Value(0.0105,"m"));

4 Examples

4-206

The CylindricalGeometry object allows you to define the cylindrical geometrical arrangement of
the battery cell. You can specify the height and radius of the cell by setting the Height and Radius
properties of the CylindricalGeometry object. For more information on the possible geometrical
arrangements of a battery cell, see the PouchGeometry and PrismaticGeometry documentation
pages.

Now use this CylindricalGeometry object to create a cylindrical battery cell.

batterycell = Cell(Geometry = CylindricalGeometry)

batterycell =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.CylindricalGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]

Show all properties

For more information, see the Cell documentation page.

The Cell object allows you to simulate the thermal effects of the battery cell by using a simple 1-D
model. To simulate the thermal effects of the battery cell, in the BlockParameters property of the
CellModelOptions property of the Cell object, set the thermal_port parameter to "model".

batterycell.CellModelOptions.BlockParameters.thermal_port = "model";

Create ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. In this example, you create a parallel
assembly of four cylindrical cells stacked in a square topology over four rows.

To create the ParallelAssembly object, use the Cell object you created before and specify the
NumParallelCells, Rows, and Topology properties according to your design.

batteryparallelassembly = ParallelAssembly(Cell = batterycell,...
 NumParallelCells = 4, ...
 Rows = 4, ...
 Topology = "Square", ...
 ModelResolution = "Detailed");

For more information, see the ParallelAssembly documentation page.

Create Module Object

You now have all the foundational elements to create your battery module. A battery module
comprises multiple parallel assemblies connected in series. In this example, you create a battery
module of 13 parallel assemblies with an intergap between each assembly of 0.005 meters. You also
define the model resolution of the module and add an ambient thermal boundary condition.

To create the Module object, use the ParallelAssembly object you created before and specify the
NumSeriesAssemblies, InterParallelAssemblyGap, ModelResolution, and
AmbientThermalPath properties.

batterymodule = Module(ParallelAssembly = batteryparallelassembly,...
 NumSeriesAssemblies = 13, ...

 Build Simple Model of Battery Module in MATLAB and Simscape

4-207

 InterParallelAssemblyGap = simscape.Value(0.005,"m"), ...
 ModelResolution = "Detailed", ...
 AmbientThermalPath = "CellBasedThermalResistance")

batterymodule =
 Module with properties:

 NumSeriesAssemblies: 13
 ParallelAssembly: [1×1 simscape.battery.builder.ParallelAssembly]
 ModelResolution: "Detailed"
 SeriesGrouping: [1 1 1 1 1 1 1 1 1 1 1 1 1]
 ParallelGrouping: [4 4 4 4 4 4 4 4 4 4 4 4 4]

Show all properties

For more information, see the Module documentation page.

Visualize Battery Module and Check Model Resolution

To obtain the number of Simscape Battery(Table-based) blocks used for the pack simulation, use the
NumModels property of your Module object.

disp(batterymodule.NumModels);

 52

To visualize the battery module before you build the system model and to view its model resolution,
use the BatteryChart object. Create the figure where you want to visualize your battery module.

f = uifigure(Color="w");
tl = tiledlayout(1,2,"Parent",f,"TileSpacing","Compact");

Then use the BatteryChart object to visualize the battery module. To view the model resolution of
the module, set the SimulationStrategyVisible property of the BatteryChart object to "On".

nexttile(tl)
batteryModuleChart1 = BatteryChart(Parent = tl, Battery = batterymodule);
nexttile(tl)
batteryModuleChart2 = BatteryChart(Parent = tl, Battery = batterymodule, SimulationStrategyVisible = "On");

4 Examples

4-208

For more information, see the BatteryChart documentation page.

Build Simscape Model for the Battery Module Object

After you have created your battery objects, you need to convert them into Simscape models to be
able to use them in block diagrams. You can then use these models as reference for your system
integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

To create a library that contains the Simscape Battery model of the Module object in this example,
use the buildBattery function.

buildBattery(batterymodule,"LibraryName","moduleLibrary");

This function creates a library named moduleLibrary_lib in your working directory. This library
contains the Simscape models of your Module and ParallelAssembly objects.

 Build Simple Model of Battery Module in MATLAB and Simscape

4-209

To build a battery pack model, see the “Build Simple Model of Battery Pack in MATLAB and
Simscape” on page 4-211 example.

See Also
Battery Builder

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

4 Examples

4-210

Build Simple Model of Battery Pack in MATLAB and Simscape

This example shows how to create and build a Simscape™ system model of a battery pack in
Simscape™ Battery™. The battery pack is a 400 V pouch battery for automotive applications. To
create the system model of a battery pack, you must first create the Cell, ParallelAssembly,
Module, and ModuleAssembly objects that comprise the battery pack, and then use the
buildBattery function.

This figure shows the overall process to create a battery pack object in a bottom-up approach:

A battery pack comprises multiple module assemblies. These module assemblies, in turn, comprise a
number of battery modules connected electrically in series or in parallel. The battery modules are
made of multiple parallel assemblies which, in turn, comprise a number of battery cells connected
electrically in parallel under a specific topological configuration or geometrical arrangement.

Once you have created your battery pack object, the buildBattery function creates a library in
your working folder that contains a system model block of the battery pack. You can use this system
model as a reference in your simulations. The run-time parameters for these models, such as the
battery cell impedance or the battery open-circuit voltage, are defined after the model creation and
are therefore not covered by the Battery Pack Builder classes. To define the run-time parameters, you
can either specify them in the block mask of the generated Simscape models or use the
MaskParameters argument of the buildBattery function.

To use the functions and objects in Simscape Battery, first import the required Simscape Battery
package:

import simscape.battery.builder.*

 Build Simple Model of Battery Pack in MATLAB and Simscape

4-211

Explore Battery Pack and Build Model in Battery Builder App

In this example, you programmatically create the battery pack and all its subcomponents by calling
the relevant objects and functions in the MATLAB Command Window. Alternatively, if you prefer a
more interactive and visual approach, you can use the Battery Builder app. Using this app, you can
interactively import existing battery objects or build them from scratch, explore and edit properties,
and view the battery hierarchy and 3-D visualization. You can then build the Simscape system model
of your objects and use it as a reference in your simulations. You can also export the objects in your
workspace. To learn how to use the Battery Builder app to generate battery objects and build
Simscape models, see the “Get Started with Battery Builder App” on page 4-31 example.

Start by exploring the battery pack that you create by following this example. Open the Battery
Builder app.

batteryBuilder

In the workspace, unzip the battery pack data.

unzip('SimpleBatteryPack.zip');

Import the battery pack object from the SimpleBatteryPack MAT file. Under the Battery Builder
tab, in the Import section of the toolstrip, click Import. Then click Import from MAT-file and load
the SimpleBatteryPack MAT file.

The Battery Builder app now comprises a Pack object and each of its subcomponents.

4 Examples

4-212

The Battery Browser panel on the left of the app contains all the battery objects in the current
active session of the app. You can select an object, visualize it in the Selected Battery tab, check its
hierarchy and child objects in the Battery Hierarchy panel, and edit its properties in the Properties
panel on the right of the app.

You can edit properties of the plot under the Battery Chart tab, such as the axes labels, axes
direction, title of the plot, and lights. You can also check the current simulation strategy and model
resolution of the selected battery object. To visualize the simulation strategy in the plot, in the
Simulation Strategy section of the toolstrip, check the Visible box.

Finally, to create a library model of the Pack object, under the Battery Builder tab, in the Library
section of the toolstrip, click Create Library. In the new window, specify the folder in which you
want to save the library, the library name, and whether to use numeric values or variable names for
the mask parameters and mask initial targets.

Click Create Library to generate the library model of your battery object in the specified folder.
Open this model to access your battery objects as Simscape blocks that you can use as a starting
point for architecture evaluation in early development stages, software and hardware development,
system integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

Create Battery Pack Object in MATLAB

This section shows how to programmatically generate the battery pack object you have explored in
the app from the MATLAB Command Window. This is the same Pack object stored in the
SimpleBatteryPack MAT file.

Create Cell Object

To create the battery Pack object, first create a Cell object of pouch format.

pouchgeometry = PouchGeometry(Height = simscape.Value(0.1,"m"),...
 Length = simscape.Value(0.3,"m"), TabLocation = "Opposed")

 Build Simple Model of Battery Pack in MATLAB and Simscape

4-213

pouchgeometry =
 PouchGeometry with properties:

 Length: [1×1 simscape.Value]
 Thickness: [1×1 simscape.Value]
 TabLocation: "Opposed"
 TabWidth: [1×1 simscape.Value]
 TabHeight: [1×1 simscape.Value]
 Height: [1×1 simscape.Value]

The PouchGeometry object allows you to define the pouch geometrical arrangement of the battery
cell. You can specify the height, length, and location of tabs of the cell by setting the Height,
Length, and TabLocation properties of the PouchGeometry object. For more information on the
possible geometrical arrangements of a battery cell, see the CylindricalGeometry and
PrismaticGeometry documentation pages.

Now use this PouchGeometry object to create a pouch battery cell.

batterycell = Cell(Geometry = pouchgeometry)

batterycell =
 Cell with properties:

 Geometry: [1×1 simscape.battery.builder.PouchGeometry]
 CellModelOptions: [1×1 simscape.battery.builder.CellModelBlock]
 Mass: [1×1 simscape.Value]

Show all properties

For more information, see the Cell documentation page.

Create ParallelAssembly Object

A battery parallel assembly comprises multiple battery cells connected electrically in parallel under a
specific topological configuration or geometrical arrangement. In this example, you create a parallel
assembly of three pouch cells.

To create the ParallelAssembly object, use the Cell object you created before and specify the
NumParallelCells property according to your design.

batteryparallelassembly = ParallelAssembly(Cell = batterycell,...
 NumParallelCells = 3)

batteryparallelassembly =
 ParallelAssembly with properties:

 NumParallelCells: 3
 Cell: [1×1 simscape.battery.builder.Cell]
 Topology: "SingleStack"
 Rows: 1
 ModelResolution: "Lumped"

Show all properties

For more information, see the ParallelAssembly documentation page.

4 Examples

4-214

Create Module Object

A battery module comprises multiple parallel assemblies connected in series. In this example, you
create a battery module of 11 parallel assemblies with an intergap between each assembly of 0.005
meters.

To create the Module object, use the ParallelAssembly object you created in the previous step
and specify the NumSeriesAssemblies and InterParallelAssemblyGap properties.

batterymodule = Module(ParallelAssembly = batteryparallelassembly,...
 NumSeriesAssemblies = 11, InterParallelAssemblyGap = simscape.Value(0.005,"m"))

batterymodule =
 Module with properties:

 NumSeriesAssemblies: 11
 ParallelAssembly: [1×1 simscape.battery.builder.ParallelAssembly]
 ModelResolution: "Lumped"
 SeriesGrouping: 11
 ParallelGrouping: 1

Show all properties

For more information, see the Module documentation page.

Create ModuleAssembly Object

A battery module assembly comprises multiple battery modules connected in series or in parallel. In
this example, you create a battery module assembly of two identical modules with an intergap
between each module equal to 0.1 meters. By default, the ModuleAssembly object electrically
connects the modules in series.

To create the ModuleAssembly object, use the Module object you created in the previous step and
specify the InterModuleGap property.

batterymoduleassembly = ModuleAssembly(Module = repmat(batterymodule,1,2),...
 InterModuleGap = simscape.Value(0.1,"m"))

batterymoduleassembly =
 ModuleAssembly with properties:

 Module: [1×2 simscape.battery.builder.Module]

Show all properties

For more information, see the ModuleAssembly documentation page.

Create Pack Object

You now have all the foundational elements to create your battery pack. A battery pack comprises
multiple module assemblies connected in series or in parallel. In this example, you create a battery
pack of 5 identical module assemblies with an intergap between each module assembly of 0.01
meters.

To create the Pack object, use the ModuleAssembly object you created in the previous step and
specify the InterModuleAssemblyGap property.

 Build Simple Model of Battery Pack in MATLAB and Simscape

4-215

batterypack = Pack(ModuleAssembly = repmat(batterymoduleassembly,1,5),...
 InterModuleAssemblyGap = simscape.Value(0.01,"m"))

batterypack =
 Pack with properties:

 ModuleAssembly: [1×5 simscape.battery.builder.ModuleAssembly]

Show all properties

For more information, see the Pack documentation page.

Visualize Battery Pack and Check Model Resolution

To obtain the number of Simscape Battery(Table-Based) blocks used for the pack simulation, use the
NumModels property of your Pack object.

disp(batterypack.NumModels);

 10

To visualize the battery pack before you build the system model and to view its model resolution, use
the BatteryChart object.

Then use the BatteryChart object to visualize the battery pack. To view the model resolution of the
module, set the SimulationStrategyVisible property of the BatteryChart object to "On".

batterypackchart = BatteryChart(Parent = uifigure, Battery = batterypack, ...
 SimulationStrategyVisible = "on");

4 Examples

4-216

To add default axis labels to the battery plot, use the setDefaultLabels method of the
BatteryChart object.

For more information, see the BatteryChart documentation page.

Build Simscape Model for the Battery Pack Object

After you have created your battery objects, you need to convert them into Simscape models to be
able to use them in block diagrams. You can then use these models as reference for your system
integration and requirement evaluation, cooling system design, control strategy development,
hardware-in-the-loop, and many more applications.

To create a library that contains the Simscape Battery model of the Pack object you created in this
example, use the buildBattery function.

buildBattery(batterypack,"LibraryName","packLibrary");

This function creates the packLibrary_lib and packLibrary SLX library files in your working
directory. The packLibrary_lib library contains the Modules and ParallelAssemblies sublibraries.

 Build Simple Model of Battery Pack in MATLAB and Simscape

4-217

To access the Simscape models of your Module and ParallelAssembly objects, open the
packLibrary_lib. SLX file, double-click the sublibrary, and drag the Simscape blocks in your
model.

The packLibrary library contains the Simscape models of your ModuleAssembly and Pack objects.

The Simscape models of your ModuleAssembly and Pack objects are subsystems. You can look
inside these subsystems by opening the packLibrary SLX file and double-click the subsystem.

To learn how to include thermal effects in a battery pack, see the “Build Model of Battery Module
with Thermal Effects” on page 4-170 example.

To build a more detailed model of a battery pack, see the “Build Detailed Model of Battery Pack From
Pouch Cells” on page 4-148 example.

To learn how to model a battery energy storage system (BESS) controller and a battery management
system (BMS) with all the necessary functions for the peak shaving, see the “Peak Shaving with
Battery Energy Storage System” on page 4-95 example.

See Also
Battery Builder

4 Examples

4-218

More About
• “Battery Modeling Workflow” on page 2-2
• “Manage Battery Run-Time Parameters with Centralized Script” on page 2-7

 Build Simple Model of Battery Pack in MATLAB and Simscape

4-219

	Getting Started
	Simscape Battery Product Description

	Battery Pack Modeling Workflows
	Battery Modeling Workflow
	Define Battery Design
	Visualize Battery
	Define Model Resolution
	Build Battery Model

	Manage Battery Run-Time Parameters with Centralized Script
	Manage Parameters and Initial Targets
	Create Battery Pack and Manage Run-Time Parameters

	Simulation and Analysis of Thermal Management Systems
	Connect Cooling Plate to Battery Blocks

	Examples
	Build Model of Battery Module with Inter-Cell Heat Exchange
	Build Model of Battery Module Assembly with Multi-Module Cooling Plate
	Analyze Battery Spatial Temperature Variation During Fast Charge
	Get Started with Battery Builder App
	Battery Cell Characterization for Electric Vehicles
	Build Model of Hybrid-Cell Battery Pack
	Protect Battery During Charge and Discharge for Electric Vehicle
	Peak Shaving with Battery Energy Storage System
	Thermal Analysis for New and Aged Battery Packs
	Size Resistor for Battery Passive Cell Balancing
	Battery Monitoring
	Battery Charging and Discharging
	Battery State-of-Health Estimation
	Battery State-of-Charge Estimation
	Battery Passive Cell Balancing
	Build Detailed Model of Battery Pack From Cylindrical Cells
	Build Detailed Model of Battery Pack From Pouch Cells
	Build Model of Battery Module with Thermal Effects
	Build Model of Battery Pack with Cell Aging
	Build Model of Battery Pack with Cell Balancing Circuit
	Build Model of Battery Pack for Grid Application
	Build Simple Model of Battery Module in MATLAB and Simscape
	Build Simple Model of Battery Pack in MATLAB and Simscape

